摘要:
A system for secure communication is provided. A random value generator is configured to generate a random value. A message validation code generator is coupled to the random value generator and configured to generate a message validation code based on a predetermined key, a message, and the random value. A one-time pad generator is coupled to the random number generator and configured to generate a one-time pad based on the random value and the predetermined key. And a masked message generator is coupled to the one-time pad generator and configured to generate a masked message based on the one-time pad and the message. A protected message envelope generator is coupled to the random value generator, the message validation code generator, and the masked message generator, and is configured to generate a protected message envelope based on the random value, the message validation code, and the masked message.
摘要:
The present invention provides for authenticating a message, A security function is performed upon the message, The message is sent to a target. The output of the security function is sent to the target. At least one publicly known constant is sent to the target. The received message is authenticated as a function of at least a shared key, the received publicly known constants, the security function, the received message, and the output of the security function. If the output of the security function received by the target is the same as the output generated as a function of at least the received message, the received publicly known constants, the security function, and the shared key, neither the message nor the constants have been altered.
摘要:
The present invention provides for authenticating a message. A security function is performed upon the message. The message is sent to a target. The output of the security function is sent to the target. At least one publicly known constant is sent to the target. The received message is authenticated as a function of at least a shared key, the received publicly known constants, the security function, the received message, and the output of the security function. If the output of the security function received by the target is the same as the output generated as a function of at least the received message, the received publicly known constants, the security function, and the shared key, neither the message nor the constants have been altered.
摘要:
The present invention provides for authenticating a message. A security function is performed upon the message. The message is sent to a target. The output of the security function is sent to the target. At least one publicly known constant is sent to the target. The received message is authenticated as a function of at least a shared key, the received publicly known constants, the security function, the received message, and the output of the security function. If the output of the security function received by the target is the same as the output generated as a function of at least the received message, the received publicly known constants, the security function, and the shared key, neither the message nor the constants have been altered.
摘要:
The present invention provides for authenticating a message. A security function is performed upon the message. The message is sent to a target. The output of the security function is sent to the target. At least one publicly known constant is sent to the target. The received message is authenticated as a function of at least a shared key, the received publicly known constants, the security function, the received message, and the output of the security function. If the output of the security function received by the target is the same as the output generated as a function of at least the received message, the received publicly known constants, the security function, and the shared key, neither the message nor the constants have been altered.
摘要:
The present invention provides for authenticating a message. A security function is performed upon the message. The message is sent to a target. The output of the security function is sent to the target. At least one publicly known constant is sent to the target. The received message is authenticated as a function of at least a shared key, the received publicly known constants, the security function, the received message, and the output of the security function. If the output of the security function received by the target is the same as the output generated as a function of at least the received message, the received publicly known constants, the security function, and the shared key, neither the message nor the constants have been altered.
摘要:
A method and system for encrypting and verifying the integrity of a message using a three-phase encryption process is provided. A source having a secret master key that is shared with a target receives the message and generates a random number. The source then generates: a first set of intermediate values from the message and the random number; a second set of intermediate values from the first set of values; and a cipher text from the second set of values. At the three phases, the values are generated using the encryption function of a block cipher encryption/decryption algorithm. The random number and the cipher text are transmitted to the target, which decrypts the cipher text by reversing the encryption process. The target verifies the integrity of the message by comparing the received random number with the random number extracted from the decrypted cipher text.
摘要:
A random number generator, a method, and a computer program product are provided for producing a random number seed. Each oscillator within an array of oscillators operates at a different frequency. The operating frequencies of each oscillator are not harmonically related, such that no integer multiple exists between the frequencies of any two oscillators. In one embodiment, the outputs of the array of oscillators connect to a multiple input latch. The multiple input latch also receives a sample signal, which is a clock signal. The clock signal samples the outputs of the array of oscillators, and the multiple input latch in conjunction with the random number determination logic (“RNDL”) produces a digital output (0 or 1) for each oscillator within the array. The RNDL uses these digital outputs to create a random number seed.
摘要:
A silicon carrier structure for electronic packaging includes a base substrate, a silicon carrier substrate disposed on the base substrate, a memory chip disposed on the silicon carrier substrate, a microprocessor chip disposed on the silicon carrier substrate, an input/output chip disposed on the silicon carrier substrate, and a clocking chip disposed on the silicon carrier substrate.
摘要:
An approach to hiding memory latency in a multi-thread environment is presented. Branch Indirect and Set Link (BISL) and/or Branch Indirect and Set Link if External Data (BISLED) instructions are placed in thread code during compilation at instances that correspond to a prolonged instruction. A prolonged instruction is an instruction that instigates latency in a computer system, such as a DMA instruction. When a first thread encounters a BISL or a BISLED instruction, the first thread passes control to a second thread while the first thread's prolonged instruction executes. In turn, the computer system masks the latency of the first thread's prolonged instruction. The system can be optimized based on the memory latency by creating more threads and further dividing a register pool amongst the threads to further hide memory latency in operations that are highly memory bound.