摘要:
A method to assemble any desired nucleic acid molecule by combining cassettes in vitro to form assemblies which are further combined in vivo, or by assembling large numbers of DNA fragments by recombination in a yeast culture to obtain desired DNA molecules of substantial size is described.
摘要:
The present invention relates to methods of joining two or more double-stranded (ds) or single-stranded (ss) DNA molecules of interest in vitro, wherein the distal region of the first DNA molecule and the proximal region of the second DNA molecule of each pair share a region of sequence identity. The method allows the joining of a large number of DNA fragments, in a predetermined order and orientation, without the use of restriction enzymes. It can be used, e.g., to join synthetically produced sub-fragments of a gene or genome of interest. Kits for performing the method are also disclosed. The methods of joining DNA molecules may be used to generate combinatorial libraries useful to generate, for example, optimal protein expression through codon optimization, gene optimization, and pathway optimization.
摘要:
A method to assemble any desired nucleic acid molecule by combining cassettes in vitro to form assemblies which are further combined in vivo, or by assembling large numbers of DNA fragments by recombination in a yeast culture to obtain desired DNA molecules of substantial size is described.
摘要:
The present invention relates to methods of joining two or more double-stranded (ds) or single-stranded (ss) DNA molecules of interest in vitro, wherein the distal region of the first DNA molecule and the proximal region of the second DNA molecule of each pair share a region of sequence identity. The method allows the joining of a large number of DNA fragments, in a predetermined order and orientation, without the use of restriction enzymes. It can be used, e.g., to join synthetically produced sub-fragments of a gene or genome of interest. Kits for performing the method are also disclosed. The methods of joining DNA molecules may be used to generate combinatorial libraries useful to generate, for example, optimal protein expression through codon optimization, gene optimization, and pathway optimization.
摘要:
Compositions and methods are disclosed herein for cloning a synthetic or a semi-synthetic donor genome in a heterologous host cell. In one embodiment, the donor genome can be further modified within a host cell. Modified or unmodified genomes can be further isolated from the host cell and transferred to a recipient cell. Methods disclosed herein can be used to alter donor genomes from intractable donor cells in more tractable host cells.
摘要:
Compositions and methods are disclosed herein for cloning a donor genome in a heterologous host cell. In one embodiment, the donor genome can be further modified within a host cell. Modified or unmodified genomes can be further isolated from the host cell and transferred to a recipient cell. Methods disclosed herein can be used to alter donor genomes from intractable donor cells in more tractable host cells.
摘要:
Methods are provided for constructing a synthetic genome, comprising generating and assembling nucleic acid cassettes comprising portions of the genome, wherein at least one of the nucleic acid cassettes is constructed from nucleic acid components that have been chemically synthesized, or from copies of the chemically synthesized nucleic acid components. In one embodiment, the entire synthetic genome is constructed from nucleic acid components that have been chemically synthesized, or from copies of the chemically synthesized nucleic acid components. Rational methods may be used to design the synthetic genome (e.g., to establish a minimal genome and/or to optimize the function of genes within a genome, such as by mutating or rearranging the order of the genes). Synthetic genomes of the invention may be introduced into vesicles (e.g., bacterial cells from which part or all of the resident genome has been removed, or synthetic vesicles) to generate synthetic cells. Synthetic genomes or synthetic cells may be used for a variety of purposes, including the generation of synthetic fuels, such as hydrogen or ethanol.
摘要:
Compositions and methods are disclosed herein for cloning a donor genome in a heterologous host cell. In one embodiment, the donor genome can be further modified within a host cell. Modified or unmodified genomes can be further isolated from the host cell and transferred to a recipient cell. Methods disclosed herein can be used to alter donor genomes from intractable donor cells in more tractable host cells.
摘要:
Compositions and methods are disclosed herein for cloning a synthetic or a semi-synthetic donor genome in a heterologous host cell. In one embodiment, the donor genome can be further modified within a host cell. Modified or unmodified genomes can be further isolated from the host cell and transferred to a recipient cell. Methods disclosed herein can be used to alter donor genomes from intractable donor cells in more tractable host cells.
摘要:
A method is provided for introducing a genome into a cell or cell-like system. The introduced genome may occur in nature, be manmade with or without automation, or may be a hybrid of naturally occurring and manmade materials. The genome is obtained outside of a cell with minimal damage. Materials such as a proteins, RNAs, polycations, nucleoid condensation proteins, or gene translation systems may accompany the genome. The genome is installed into a naturally occurring cell or into a manmade cell-like system. A cell-like system or synthetic cell resulting from the practice of the provided method may be designed and used to yield gene-expression products, such as desired proteins. By enabling the synthesis of cells or cell-like systems comprising a wide variety of genomes, accompanying materials and membrane types, the provided method makes possible a broader field of experimentation and bioengineering than has been available using prior art methods.