摘要:
This invention relates to a process for producing a product stream with improved reduction of Conradson Carbon Residue (“CCR”) and a reduced average boiling point from a heavy hydrocarbon feedstream utilizing a high-pressure, low-energy separation process. The invention may be utilized to reduce the CCR content and reduce the average boiling point in heavy hydrocarbon feedstreams, such as whole crudes, topped crudes, synthetic crude blends, shale oils, bitumen, oil from tar sands, atmospheric resids, vacuum resids, or other heavy hydrocarbon streams. This invention also results in a process with an improved CCR separation efficiency while maintaining permeate flux rates.
摘要:
This invention relates to a process for producing a product stream with improved reduction of Conradson Carbon Residue (“CCR”) and a reduced average boiling point from a heavy hydrocarbon feedstream utilizing a high-pressure, low-energy separation process. The invention may be utilized to reduce the CCR content and reduce the average boiling point in heavy hydrocarbon feedstreams, such as whole crudes, topped crudes, synthetic crude blends, shale oils, bitumen, oil from tar sands, atmospheric resids, vacuum resids, or other heavy hydrocarbon streams. This invention also results in a process with an improved CCR separation efficiency while maintaining permeate flux rates.
摘要:
This invention relates to a process of producing an upgraded product stream from steam cracker tar feedstream suitable for use in refinery or chemical plant processes or for utilization in fuel oil sales or blending. This process utilizes an ultrafiltration process for separating the steam cracker tar constituents resulting in a high recovery, low-energy process with improved separation and product properties.
摘要:
This invention relates to a process of producing an upgraded product stream from steam cracker tar feedstream suitable for use in refinery or chemical plant processes or for utilization in fuel oil sales or blending. This process utilizes an ultrafiltration process for separating the steam cracker tar constituents resulting in a high recovery, low-energy process with improved separation and product properties.
摘要:
The present invention relates to a process for improving a deasphalting unit process by producing an improved feedstream for the deasphalting process via ultrafiltration of a vacuum resid-containing feedstream. In particular, the present invention produces an improved quality feedstream to a solvent deasphalting process which results in improved deasphalted oil (DAO) production rates and/or higher quality deasphalted oils. The present invention can be particularly beneficial when used in conjunction with an existing deasphalting equipment to result in improved deasphalted oil (DAO) production rates and/or higher quality deasphalted oils from the existing deasphalting equipment without the need for significant equipment modifications to the existing deasphalting unit.
摘要:
This invention relates to an ultrafiltration process for separating a heavy hydrocarbon stream to produce an enriched saturates content stream(s) utilizing an ultrafiltration separations process. The enriched saturates content streams can then be further processed in refinery and petrochemical processes that will benefit from the higher content of saturated hydrocarbons produced from this separations process. The invention may be utilized to separate heavy hydrocarbon feedstreams, such as whole crudes, topped crudes, synthetic crude blends, shale oils, oils derived from bitumen, oils derived from tar sands, atmospheric resids, vacuum resids, or other heavy hydrocarbon streams into enriched saturates content product streams. The invention provides an economical method for separating heavy hydrocarbon stream components by molecular species instead of molecular boiling points.
摘要:
This invention relates to an ultrafiltration process for separating a heavy hydrocarbon stream to produce an enriched saturates content stream(s) utilizing an ultrafiltration separations process. The enriched saturates content streams can then be further processed in refinery and petrochemical processes that will benefit from the higher content of saturated hydrocarbons produced from this separations process. The invention may be utilized to separate heavy hydrocarbon feedstreams, such as whole crudes, topped crudes, synthetic crude blends, shale oils, oils derived from bitumen, oils derived from tar sands, atmospheric resids, vacuum resids, or other heavy hydrocarbon streams into enriched saturates content product streams. The invention provides an economical method for separating heavy hydrocarbon stream components by molecular species instead of molecular boiling points.
摘要:
The present invention relates to a process for improving a deasphalting unit process by producing an improved feedstream for the deasphalting process via ultrafiltration of a vacuum resid-containing feedstream. In particular, the present invention produces an improved quality feedstream to a solvent deasphalting process which results in improved deasphalted oil (DAO) production rates and/or higher quality deasphalted oils. The present invention can be particularly beneficial when used in conjunction with an existing deasphalting equipment to result in improved deasphalted oil (DAO) production rates and/or higher quality deasphalted oils from the existing deasphalting equipment without the need for significant equipment modifications to the existing deasphalting unit.
摘要:
This invention relates to a process of producing an upgraded product stream from the products of a resid visbreaking process to produce an improved feedstream for refinery and petrochemical hydrocarbon conversion units. This process utilizes an ultrafiltration process for upgrading select visbreaking process product streams to produce a conversion unit feedstream with improved properties for maximizing the conversion unit's throughput, total conversion, run-time, and overall product value.
摘要:
Organosilica materials, which are a polymer of at least one independent monomer of Formula [Z1OZ2OSiCH2]3 (I), wherein Z1 and Z2 each independently represent a hydrogen atom, a C1-C4 alkyl group or a bond to a silicon atom of another monomer and at least one other monomer is provided herein. Methods of preparing and processes of using the organosilica materials, e.g., for gas separation, color removal etc., are also provided herein.