Abstract:
A system for delivering particulate material from a common hopper to row units mounted on each of first and second pivotally interconnected frame sections of an agricultural implement. The delivery system includes a first series of conduits for directing particulate material from the hopper to the row units mounted on the first frame section of the implement and a second series of conduits. Each conduit in the second series of conduits includes a first tube leading from the hopper, a second tube leading from a particular row unit on the second frame section of the implement, and a split manifold coupling for connecting free ends of the tubes in the second series of conduits thereby defining enclosed passages leading from the hopper to each row unit on the second frame section of the implement which is adapted to receive material from the hopper.
Abstract:
A seed planter performance monitor is disclosed herein. The monitor is used with a planting system including a planter coupled to the tractor. The target rate at which the planter deposits seeds into the soil being planted is controlled with a control signal, and the actual rate at which seeds are planted is monitored with an infrared seed sensor supported by the planter at the location where seeds exit the planter. The planter and tractor both include data busses, and the signal from the seed sensor is transmitted to a controller on the tractor via the busses. The controller applies an appropriate signal to an electronic display in the cab of the tractor to produce an image thereon which an operator can view to determine the actual rate at which seeds are planted. The operator compares the target and the actual planting rates, and adjusts or controls the planter to place the rates in general correspondence by varying planter parameters such as air flow or pressure in the planter, or brush spacing in the drum of the seed meter.
Abstract:
A sectional rate control unit for an agricultural implement is disclosed herein. The sectional rate control unit is preferably used with a planting system including a planting implement coupled to a work vehicle. The implement includes a frame having at least one section supporting multiple row units which are configured to apply a product (e.g., seed, fertilizer, insecticide, herbicide) to the rows in a field. Each section includes a product delivery apparatus having a target delivery rate controlled by a section application control signal and at least one product channel for delivering an amount of the product to each of the row units. The control unit includes an electronic product sensor coupled to each of the sections and the product channel. The product sensor is configured to generate a product rate signal representative of the amount of the product delivered to the row units. An electronic display located in the cab is configured to generate an image in response to a display signal. The display includes operator-actuatable switches configured to independently control the state of each of the sections and the target delivery rate of each product for each of the sections. A processor circuit is configured to monitor the product rate signal from each product sensor, to calculate product rate data for each product sensor, to generate and apply a display signal to the electronic display to generate the image on the display representing the product rate data for each product in each section, and to generate and apply the section application control signal to each product delivery apparatus in response to actuations of the switches on the electronic display.
Abstract:
A centralized monitoring unit for an agricultural implement is disclosed herein. The monitoring unit is preferably used with a planting system including a planting implement coupled to a work vehicle. The implement includes a frame supporting row units which are configured to apply a product (e.g., seed, fertilizer, insecticide, herbicide) to the rows in a field. The monitoring unit includes a product delivery apparatus which has at least one product channel for delivering the product to the row units, and an electronic product sensor which is coupled to the product delivery apparatus and configured to generate a product signal representing an amount of the product which moves through the product channel. An electronic display located in the cab of the work vehicle is configured to generate an image in response to a display signal. A processor circuit is configured to monitor the product signal, calculate application progress statistics, calculate implement statistics, calculate product rate statistics and apply the display signal to the electronic display to generate the image on the electronic display representative of the application progress statistics, the implement statistics and the product rate statistics.
Abstract:
Disclosed is farming apparatus for customizing the rate at which farming material such as seeds, fertilizers, herbicides and/or insecticides may be applied to an agricultural field. The implement, which deposits the farming material in the soil includes applicators for applying the farming material at predetermined and adjustable rates. In the cab of the tractor is an electronic unit which include apparatus for setting the application rate of the farming material, at least at selected portions of the field, and a communication link between this electronic unit and at least selected applicators on the implement, for conveying information relating to the amount of farming material to be applied for a distance travelled of the implement across the field. Conversion apparatus on the applicator permits converting the amount of farming material to be applied per unit distance to the amount of farming material to be applied per unit of time to thereby account for the speed of the vehicle and thus the implement over the field. The conversion apparatus includes a controller for controlling the applicators regardless of the ground speed to permit the desired amount of material to be applied to the field.
Abstract:
One or more agricultural products, such as seed, fertilizer, herbicide and pesticide, may be dispensed at each of a plurality of row locations on an agricultural implement toolbar. A local bus connects each local metering device to a local controller at the row location, which may also have actual product application rate and soil characteristic sensors. The local controllers are connected through a system bus to a central processor mounted on the tractor, which is connected to a memory for storing product prescription and actual application maps, and also to a GPS receiver for determining current location in the field. Each local controller controls the agricultural product metering device(s) at the row location as a function of the last commanded rate received from the processor and the actual rate as sensed at the row location. The commanded rate may be derived by the processor as a function of multiple variables as stored in levels of the prescription map, or from a manual override signal from the operator.
Abstract:
An apparatus and method is disclosed for positioning a farming implement connected to a farm work vehicle controlled by an operator. The apparatus includes an actuation system for positioning the implement with respect to a reference, a position sensor for providing a position signal indicative of the position of the implement above the reference, and an electronic control unit for receiving the position signal. The electronic control unit is operatively connected to the actuation system, and directs the actuation system to stop the implement if a predetermined period of time has elapsed after the position signal indicates that the implement has reached a predetermined position. An apparatus and method is also disclosed for positioning one or more markers associated with a farming implement connected to a farm work vehicle controlled by an operator. The apparatus includes an actuation system for positioning the implement and the one or more markers with respect to a reference, a position sensor for providing a position signal indicative of the position of the implement above the reference, and an electronic control unit for receiving the position signal. The electronic control unit is operatively connected to the actuation system, and directs the actuation system upon a predetermined time lapse after the position signal indicates that the implement has reached a predetermined position.
Abstract:
A control system for agricultural implements such as planters, conventional or air drills is disclosed herein. The implement includes a frame with one or more sections. Each section supports a plurality of row units configured to apply a product at variable rates to rows in a field. The products can include seeds, fertilizers, insecticides and herbicides. In one configuration, the control system monitors the rates at which the product is applied to the rows. This configuration of the control system includes sensors configured to sense the rates at which product is applied, and a control module configured to monitor the sensed rates and generate a multiplexed output signal representative thereof. The output signal is used, for example, by a cab-mounted display or recording device. The control system, however, can be reconfigured to both monitor and control the application rates by installing a second control module on the frame. The second control module generates rate control signals in response to rate command input signals. The rate control signals are applied to the metering device to cause the metering device to meter product to the row units at the commanded rates. Commanded rates are set, for example, by a cab-mounted display control module.
Abstract:
A performance monitor for a seed planting implement is disclosed herein. The monitor is preferably used with a planting system including a planting implement coupled to a tractor. The target rate at which seed is planted by the implement in the soil of an agricultural field is controlled based upon a control signal. The actual seed planting rate is monitored using an optical seed sensor supported by the implement at a location where seed exits the implement. The implement and tractor include data busses linked to each other, and signals from the seed sensors are transmitted to a controller on the tractor via the busses. The controller applies a display signal to an electronic display located in the tractor's cab to produce an image which an operator can view to determine the actual seed application rate. The image also shows the target seed application rate to allow the operator to compare actual and target rates to determine whether the implement needs to be adjusted or repaired to eliminate or reduce any deviation in rates. Seed application rates for each section of a multiple-section implement can be displayed sequentially for efficient use of the display, with the rate for each row unit also being displayed.
Abstract:
A control system for agricultural implements such as planters, conventional or air drills is disclosed herein. The implement has a frame with multiple sections and each section has a plurality of row units to apply product to multiple rows in a field. The implement is equipped with global output devices (e.g., lights, actuators for moving moveable frame members, actuators for moving markers) to perform global implement functions in response to global control signals. Each section includes one or more local product metering devices for applying products at varying rates in response to local control signals. The products include seed, fertilizer, insecticide and herbicide. The control system includes command sources (e.g., a lighting connector; an operator interface in the cab) to generate global commands for the global implement functions and to generate local rate commands for the metering devices. The control system further includes a global controller, and local controllers corresponding to the sections. The global controller receives the global commands for the global implement functions and generates the global control signals therefrom. The local controllers receive the local rate commands for the local product metering devices and generate the local control signals therefrom.