摘要:
Describes a method of electrochemically converting .alpha.-halohydrins, e.g., 1-chloro-2-hydroxypropane and 1,3-dichloro-2-hydroxypropane, to epoxides, e.g., propylene oxide and epichlorohydrin. A three compartment electrolytic cell is provided having (1) a catholyte compartment containing a cathode assembly comprising a cathode and anion exchange membrane, (2) an anolyte compartment containing an anode assembly comprising an anode and a cation exchange membrane, and (3) an intermediate compartment partitioned from the catholyte and anolyte compartments by the anion and cation exchange membranes respectively. An aqueous solution of .alpha.-halohydrin is charged to the catholyte compartment, while hydrogen halide solutions are charged to the intermediate and anolyte compartments. Direct current is passed through the electrolytic cell and an aqueous solution comprising epoxide is removed from the catholyte compartment.
摘要:
Described is a method of electrochemically converting .alpha.-halohydrins, e.g., 1-chloro-2-hydroxypropane and 1,3-dichloro-2-hydroxypropane, to epoxides, e.g., propylene oxide and epichlorohydrin. An electrolytic cell is provided having (1) a catholyte compartment containing a cathode assembly comprising a cathode and a bipolar ion exchange membrane, (2) an anode compartment containing an anode assembly comprising either (a) a hydrogen consuming gas diffusion anode and a current collecting electrode or (b) a hydrogen consuming gas diffusion anode which is fixedly held between a hydraulic barrier and a current collecting electrode, and (3) at least one pair of intermediate compartments separating the catholyte and anode compartments and separated from each other by an anion exchange membrane. The following are introduced into the cell: a first aqueous conductive electrolyte solution into the catholyte compartment; hydrogen gas into the anode compartment; an aqueous solution of .alpha.-halohydrin into the first compartment of the pair of intermediate compartments; and a second aqueous conductive electrolyte solution into the second compartment of the pair of intermediate compartments. Direct current is passed through the electrolytic cell, and an aqueous solution comprising epoxide is removed from the first compartment.
摘要:
Described is a method of electrochemically converting .alpha.-halohydrins, e.g., 1-chloro-2-hydroxypropane and 1,3-dichloro-2-hydroxypropane, to epoxides, e.g., propylene oxide and epichlorohydrin. A three compartment electrolytic cell is provided having (1) a catholyte compartment containing a cathode assembly comprising a cathode and an anion exchange membrane, (2) an anode compartment containing an anode assembly comprising either (a) a hydrogen consuming gas diffusion anode and a current collecting electrode or (b) a hydrogen consuming gas diffusion anode which is fixedly held between a hydraulic barrier and a current collecting electrode, and (3) an intermediate compartment separated from the catholyte and anode compartments by the anion exchange membrane and either (i) the hydrogen consuming gas diffusion anode or (ii) the hydraulic barrier respectively. An aqueous solution of .alpha.-halohydrin is charged to the catholyte compartment, while hydrogen gas is charged to the anode compartment and an aqueous electrolyte solution is charged to the intermediate compartment. Direct current is passed through the electrolytic cell and an aqueous solution comprising epoxide is removed from the catholyte compartment.
摘要:
Describes a method of electrochemically converting .alpha.-halohydrin, e.g., 1-chloro-2-hydroxypropane and 1,3-dichloro-2-hydroxypropane, to epoxide, e.g., propylene oxide and epichlorohydrin. An aqueous solution of .alpha.-halohydrin is charged to the catholyte compartment of an electrolytic cell, which contains a cathode, hydrogen gas is charged to the anode compartment of the cell, which contains an anode assembly comprising a hydrogen consuming gas diffusion anode fixedly held between a current collecting electrode and an anion exchange membrane. The catholyte and anode compartments of the cell are separated by the anion exchange membrane. An aqueous solution containing epoxide is removed from the catholyte compartment.
摘要:
A pigmented curable composition adapted for decorating ceramic substrates (e.g., glass bottles) comprises curable organic binder and solid spherical particles (glass or polymer) having diameters of 10 to 50 microns for facilitating overprinting of additional layers. The preferred embodiment comprises: (a) reactive organic resin component in which epoxy groups comprise the major reactive functionality; (b) amino-functional curing agent; (c) blocked polyisocyanate; and (d) 5 to 35 percent solid spherical particles having diameters of 10 to 50 microns.
摘要:
The dehydrochlorination of 1,1,2,3,3-pentachloropropane to produce 1,2,3,3-tetrachloropropene is conducted using aqueous alkali metal hydroxide in the substantial absence of added ethanol. The 1,2,3,3-tetrachloropropene is recovered from the reaction mixture in the substantial absence of added ether. The preferred methods of recovery are steam distillation and flash distillation.
摘要:
A method comprising heating to elevated temperature a ceramic substrate having thereon a sequence of coatings of pigmented coating compositions wherein each of said pigmented coating compositions comprises: (a) reactive organic resin which is polyhydroxy-functional, polyepoxy-functional, or both epoxy-functional and hydroxy-functional; (b) reactive wax; (c) color-imparting pigment; and (d) blocked polyisocyanate; wherein: (e) the pigmented coating composition of at least one coating of the sequence is substantially free of amino-functional curing agent; and (f) the pigmented coating composition of at least one other coating of the sequence further comprises amino-functional curing agent; to crosslink all of the pigmented coating compositions of the coatings of the sequence and to adhere the sequence to the ceramic substrate. The preferred ceramic substrates are glass bottles.The outermost coating of the sequence may optionally be overlain with a coating of substantially clear overcoating composition which comprises reactive organic resin which is polyhydroxy-functional, polyepoxy-functional, or both epoxy-functional and hydroxy-functional. Upon heating to the elevated curing temperature, the substantially clear overcoating composition is crosslinked together with the pigmented coating compositions.
摘要:
Described is a method of preparing a cured, non-elastomeric polyurethane-containing film including: a) providing as a first component comprising a polyurethane material having isocyanate functional groups; b) providing as a second component a material having active hydrogen-containing functional groups that are reactive with isocyanate; c) combining the first and second components to form a reaction mixture; d) casting the reaction mixture onto a support substrate in a substantially uniform thickness to form a film thereon; e) heating the film on the support substrate to a temperature and for a time sufficient to yield a cured film; and f) removing the cured film from the support substrate to yield a non-elastomeric polyurethane-containing free film. The free film is non-birefringent. Optical elements and articles prepared from the films are also provided.
摘要:
A curable composition including a curable organic binder and organic particles that are not expanded or expandable is disclosed. The particles are rigid at or below a first temperature and become soft at temperatures at which the organic binder is cured. Methods for printing substrates are also disclosed.
摘要:
Polyester materials, methods for making polyesters materials, and uses of the polyester materials in binder materials and articles of manufacture are disclosed. In one embodiment, a process is provided for preparing a polyester solution, including mixing monomers of at least one organic acid containing at least three carboxylic groups and at least one multi-hydroxyl alcohol containing at least three hydroxyl groups to form a reaction mixture, heating the reaction mixture to a first temperature, polymerizing the monomers at the first temperature until reaching an acid value from about 200 to about 400 mg KOH/g, adjusting the temperature to a second temperature less than the first temperature, and forming the polyester solution. The polyester materials may be mixed with cross-linking materials to form binder materials. The binder material may then be used to form articles of manufacture.