摘要:
A memory cell made of at least two electrodes with a controllably conductive media between the at least two electrodes is disclosed. The controllably conductive media includes a passive layer made of super ionic material and an active layer. When an external stimuli, such as an applied electric field, is imposed upon the first and second electrode, ions move and dope and/or de-dope the polymer. The applied external stimuli used to dope the polymer is larger than an applied external stimuli to operate the memory cell. The polymer functions as a variable breakdown characteristic diode with electrical characteristics which are a consequence of the doping degree. The memory element may have a current limited read signal. Methods of making the memory devices/cells, methods of using the memory devices/cells, and devices such as computers, hand-held electronic devices and memory devices containing the memory cell(s) are also disclosed.
摘要:
The present invention is a method of programming a memory device, wherein different levels or magnitudes of current may be applied to and imposed on the memory device so that any one of a plurality of memory states may be realized. A read step indicates the so determined state of the memory device.
摘要:
The present memory device has first and second electrodes, a passive layer between the first and second electrodes and on and in contact with the first electrode, and an active layer between the first and second electrodes and on and in contact with the passive layer and second electrode, for receiving a charged specie from the passive layer. The active layer is a mixture of (i) a first polymer, and (ii) a second polymer for enhancing ion transport, improving the interface and promoting a rapid and substantially uniform distribution of the charged specie in the active layer, i.e., preventing a localized injection of the charged species. These features result in a memory element with improved stability, a more controllable ON-state resistance, improved switching speed and a lower programming voltage.
摘要:
The present memory device includes first and second electrodes, a passive layer between the first and second electrodes and an active layer between the first and second electrodes, the active layer being of a material containing randomly oriented pores which are interconnected to form passages through the active layer.
摘要:
Improving memory retention properties of a polymer memory cell are disclosed. The methods include providing a semiconducting polymer layer containing at least one organic semiconductor and at least one of a carrier ion oxidation preventer and an electrode oxidation preventer. The oxidation preventers may contain at least one of 1) an oxygen scavenger, 2) a polymer with oxidizable side-chain groups which can be preferentially oxidized over the carrier ions/electrodes, and 3) an oxidizable molecule that can be preferentially oxidized over the carrier ions/electrodes.
摘要:
The present invention is a method of programming a memory device, wherein different levels or magnitudes of current may be applied to and imposed on the memory device so that any one of a plurality of memory states may be realized. A read step indicates the so determined state of the memory device.
摘要:
The present memory device has first and second electrodes, a passive layer between the first and second electrodes and on and in contact with the first electrode, and an active layer between the first and second electrodes and on and in contact with the passive layer and second electrode, for receiving a charged specie from the passive layer. The active layer is a mixture of (i) a first polymer, and (ii) a second polymer for enhancing ion transport, improving the interface and promoting a rapid and substantially uniform distribution of the charged specie in the active layer, i.e., preventing a localized injection of the charged species. These features result in a memory element with improved stability, a more controllable ON-state resistance, improved switching speed and a lower programming voltage.
摘要:
Systems and methods are disclosed that facilitate extending data retention time in a data retention device, such as a nanoscale resistive memory cell array, via assessing a resistance level in a tracking element associated with the memory array and refreshing the memory array upon a determination that the resistance of the tracking element has reached or exceeded a predetermined reference threshold resistance value. The tracking element can be a memory cell within the array itself and can have an initial resistance value that is substantially higher than an initial resistance value for a programmed memory cell in the array, such that resistance increase in the tracking cell will cause the tracking cell to reach the threshold value and trigger refresh of the array before data corruption/loss occurs in the core memory cells.
摘要:
A memory cell made of at least two electrodes with a controllably conductive media between the at least two electrodes is disclosed. The controllably conductive media includes a passive layer made of super ionic material and an active layer. When an external stimuli, such as an applied electric field, is imposed upon the first and second electrode, ions move and dope and/or de-dope the polymer. The applied external stimuli used to dope the polymer is larger than an applied external stimuli to operate the memory cell. The polymer functions as a variable breakdown characteristic diode with electrical characteristics which are a consequence of the doping degree. The memory element may have a current limited read signal. Methods of making the memory devices/cells, methods of using the memory devices/cells, and devices such as computers, hand-held electronic devices and memory devices containing the memory cell(s) are also disclosed.
摘要:
The present invention is a method of undertaking a procedure on a memory-diode, wherein a memory-diode is provided which is programmable so as to have each of a plurality of different threshold voltages. A reading of the state of the memory-diode indicates the so determined threshold voltage of the memory-diode.