摘要:
Differential measurement of a transformer magnetizing current and a delta-modulation technique is used to provide compensation for dc saturation of the transformer core, with faster response times, low losses, and with immunity to dc drift in the measuring electronics. During the half-cycle in which the output voltage transitions from its positive maximum to its negative maximum, the positive peak value of the magnetizing current is determined, and during the half-cycle in which the output voltage transitions from its negative maximum to its positive maximum, the negative peak value of the magnetizing current is determined. The positive peak magnetizing current value is compared to the similar value from the previous cycle, and the onset of core saturation in the positive direction is then determined. The negative peak magnetizing current value is compared to the similar value from the previous cycle, and the onset of core saturation in the negative direction is then determined. Based on the results of the core saturation determinations, a control action is determined in accordance with a truth table.
摘要:
Notching in a switch-mode converter is compensated for to restore a sinusoidal output voltage waveform to the output of the converter, regardless of the load current level, power level, or power factor (both distortion and displacement power factor). Waveform smoothing for a waveform in a switch-mode converter having a DC bus voltage and an output filter inductance comprises determining a ripple current in the converter; determining a time-to-zero; determining a turn-on time; determining the lesser of the time-to-zero and the turn-on time; determining a duty cycle modification based on the lesser of the time-to-zero and the turn-on time; and applying the duty cycle modification to the waveform.
摘要:
An electronic interface couples a combination of generation and storage devices with a power grid and/or a load. The interface comprises a DC bus; a DC storage device coupled to the DC bus; a first DC-to-AC inverter (N1) having a DC port operatively coupled to the DC bus, and an AC port; a second DC-to-AC inverter (N2) having a DC port operatively coupled to the DC bus, and an AC port; a switch (S4) for electrically coupling the AC port of the second DC-to-AC inverter to a first generator or an AC storage device; a first rectifier (D1) for coupling an AC output of the first generator to the DC bus; and a second rectifier (D2) for coupling an AC output of the AC storage device to the DC bus. The electronic interface provides an efficient mechanism for integrating a variety of storage and generation devices to produce high quality power and reliability to a load as well as to facilitate interfacing of the storage and generation devices to the power grid for purposes of energy control, load leveling, and peak shaving.
摘要:
The present invention relates to a method and apparatus for controlling the speed of an electronically commutated motor. Such motors typically include a rotor, a stator coil, and an electronic commutator for controlling electrical power flow from an electrical power source of predetermined frequency to the stator coil. The invention includes the steps of generating a switch control signal responsive to a position of the rotor; generating a phase gating signal from the electrical power source of predetermined frequency, the phase gating signal having twice the predetermined frequency and having transitions in timed relation to the zero crossings of the electrical power source; varying the timed relation of the phase gating signal in accordance with an operational parameter desired for the electronically commutated motor; generating a phase controlled switch signal which is responsive to the phase gating signal and the switch control signals; and applying the phase controlled switch signal to the electronic commutator to control the electronic commutator, thereby controlling the speed of the electronically commutated motor.
摘要:
A system used to protect the occupants of a stationary motor vehicle, particularly unattended children and pets, from dangerous conditions occurring within the vehicle. The system comprises a sensor which senses dangerous environmental conditions such as high temperatures within the vehicle. In the preferred embodiment, the sensor is used with a transmitter to continuously transmit sound detected within the vehicle passenger compartment as well as transmitting information about any dangerous conditions which occur to a remotely located person. In a second embodiment, dangerous conditions trigger an alarm attached to the vehicle. The alarm amplifies the sound detected within the vehicle, such as a crying child, or a barking dog, and also produces a standard alarm sound alternated with an amplified voice declaring the dangerous condition. In a third embodiment, a sensor module attached to a wireless telephone informs a remotely located person of the dangerous condition through another wireless telephone or a pager.
摘要:
A power supply system for providing long and short term backup power to a load comprises a microturbine system, a flywheel system, and a power electronics module. The microturbine system includes a microturbine attached to a first, high speed motor-generator that includes a first stator, and the flywheel system includes a flywheel attached to a second motor-generator. The microturbine system is started by a direct connection of a high frequency AC voltage output of the flywheel system (in the range of from about 500 Hz to about 2 kHz) to the stator of the first motor-generator. The direct connection of the high frequency AC voltage to the stator involves no intervening electronics.
摘要:
The invention is directed to a method, system and device for converting direct current (DC) electrical voltage from a fuel cell to an alternating current (AC) voltage. The inventive method regulates power drawn from the fuel cell and from a battery to maintain a substantially constant DC voltage across a DC bus, and inverts the DC voltage from the DC bus to the AC voltage. The method may further electrically isolate the fuel cell from the load. Also, the inventive method may prevent current from flowing to the fuel cell. The inventive method may also provide a charging current to the battery.
摘要:
A fuel cell is placed in parallel with a battery via a mechanical switch. The voltage is held nearly constant by the battery and the power flow is controlled by adjusting the fuel cell operating parameters (such as temperature or air flow) and by opening and closing the mechanical switch. The result is a system that operates at nearly constant voltage without the need for an expensive power conditioning system. The output of the system can then be processed via a traditional power conditioning system such as an inverter or dc-to-dc converter without the need for a wide range of input operating voltages. This reduces the cost and size of the fuel cell power conditioning system.
摘要:
Batteries are often used for load-following, particularly in combination with generation sources that cannot respond to fast load changes. Batteries that display “memory” (i.e., their ability to operate correctly over their entire depth of discharge depends on their previous level of charge or discharge) cannot adequately follow loads. This invention allows the use of batteries that display “memory” in load-following applications.
摘要:
A power conditioner interfaces a load to a fuel cell 10 that produces a low voltage that varies with the load. A dc-to-ac inverter 16 operates with a low voltage input provided by a dc bus 14. When a positive step load change occurs, a low voltage battery 22 provides power equal to the step change until the fuel cell 10 is able to provide enough power to support the entire load. The power from the battery 22 is supplied to the varying dc bus 14 through a boost converter 12. When very large positive load step changes occur, the battery can feed power to the dc bus through diode D1, rather than through the boost converter. Diode D1 does not need to be used, but its use allows the boost converter to be sized for common load changes rather than for the maximum possible load change (such as might be seen during a faulted output). A buck converter converts the variable voltage on the dc bus 14 to the appropriate float charging voltage of the battery. The buck converter also supplies power for auxiliary equipment when available from the fuel cell. If the fuel cell is unable to provide the auxiliary power (such as during startup or load transients), then the auxiliary power can come directly from the battery.