摘要:
A LIDAR system that can accommodate both a clear atmosphere and be adaptable to environments in which smoke, dust or other particulates (i.e., a degraded environment) exist in the atmosphere around the target is described. The system operates in two fields of regard: clear view mode (wide field of regard) and a degraded view mode (narrow field of regard). The wide field of regard allows the output laser energy to be concentrated over a large number of detector pixels and thus resulting in high scene scan rate. The narrow field of regard allows concentrating the laser output energy on fewer pixels to compensate for the loss of laser energy due to atmospheric degradation. The combination of the ROIC and LIDAR modes of operation result in a system that is capable of operation under clear and degraded environments.
摘要:
A LIDAR system having a rotating geometric solid polyhedron reflective scanning and receiving element disposed on a rotation table element. The system is configured for scanning a transmitted electromagnetic beam such as a laser beam over a scene of interest in both elevation and azimuth and for receiving a reflected portion of the transmitted beam onto the focal plane detector array of the invention and to output an (x, y, range) set of point cloud coordinate image data.
摘要:
A phase-sensing and scanning time-of-flight LADAR method and device are disclosed that take advantage of an atmospheric absorption bands within the solar IR spectrum.In the phase-sensing LADAR embodiment, an object is illuminated with electromagnetic energy such as a laser beam having a wavelength substantially equal to a predetermined atmospheric absorption band such as 1.39 microns. The transmitted laser beam is modulated at a predetermined frequency and has a first phase. The phase of the reflected and returned laser beam is altered proportional to the distance of the object and has a second phase. The first phase of the transmitted signal and the second phase of the received signal are compared and used to determine the distance of the object from the device. The system may comprise a modified laser that is tuned to operate in an atmospheric absorption band. A method to identify range ambiguity is disclosed by periodically altering the modulation frequency from a first modulation frequency to a second modulation frequency.In the scanning LADAR embodiment, an object is scanned or illuminated with electromagnetic energy having a wavelength substantially equal to a predetermined atmospheric absorption band at a first time and detects the reflection of the beam at a second time. The difference in time from the transmission of the scanning beam and the detection of the reflection of the beam from the object is used to calculate the range of the object.
摘要:
A LIDAR system that can accommodate both a clear atmosphere and be adaptable to environments in which smoke, dust or other particulates (i.e., a degraded environment) exist in the atmosphere around the target is described. The system operates in two fields of regard: clear view mode (wide field of regard) and a degraded view mode (narrow field of regard). The wide field of regard allows the output laser energy to be concentrated over a large number of detector pixels and thus resulting in high scene scan rate. The narrow field of regard allows concentrating the laser output energy on fewer pixels to compensate for the loss of laser energy due to atmospheric degradation. The combination of the ROIC and LIDAR modes of operation result in a system that is capable of operation under clear and degraded environments.
摘要:
A multilayer electronic imaging module and sensor system incorporating a micro-lens layer for imaging and collimating a received image from a field of regard, a photocathode layer for detecting photons from the micro-lens layer and generating an electron output, a micro-channel plate layer for receiving the output electrons emitted from the photocathode in response to the photon input and amplifying same and stacked readout circuitry for processing the electron output of the micro-channel plate. The sensor system of the invention may be provided in the form of a Cassegrain telescope assembly and includes electromagnetic imaging and scanning means and beam-splitting means for directed predetermined ranges of the received image to one or more photo-detector elements which may be in the form of the micro-channel imaging module of the invention.
摘要:
A sensor system is provided comprising a precision tracking sensor element and one or more acquisition sensor elements. The acquisition sensor elements may be mounted on a rotating base element that rotates about a first axis. The precision tracking sensor elements may be mounted on a hinged or pivoting element or gimbal on the housing and provided with drive means to permit a user to selectively manually or automatically direct it toward a scene target of interest detected by the acquisition sensor elements. At least one of the imaging elements in the precision tracking sensor or acquisition sensors is stacked micro-channel plate focal plane array element.
摘要:
A sensor suite comprising a first electronic imaging element such as an LWIR imager element and a second imaging element such as a visible imager element. The transmitter operates with a plurality of selectable beam-forming optics or a tilt-tip element. The optics for the system may be configured in a Cassegrain-type configuration in cooperation with a plurality of beam-splitting elements to permit different ranges of the received optical input to be provided respectively to the first and second electronic imagers. One or a plurality of laser illuminator analysis spectrometers are provided for the detection and characterizing of incoming laser illumination from an external source which may be in the form of a micro-lamellar spectrometer element.
摘要:
A device and method for LADAR ranging using relatively long laser pulse widths and slower system clock speeds is provided. The center points of the sent and received laser signal such as Gaussian laser pulses are identified by time sampling the sent and received laser signal waveforms at predetermined time positions.The signal energy within each time sample of the respective sent and received laser signals defines a clock “bin”. The received laser signal generates an output from a photodetector cell on a focal plane array that is converted into voltage. The signal energy is integrated using a capacitor array for each of the clock bins and is representative of the signal energy in each time sample.The output of the capacitor array is collected in buffer and digitized. Signal processing means extracts the center of the transmitted and received pulses and the time-of-flight calculated as the time between the transmitted and returned centers of the laser signal pulses.
摘要:
A phase-sensing and scanning time-of-flight LADAR method and device are disclosed that take advantage of an atmospheric absorption bands within the solar IR spectrum.In the phase-sensing LADAR embodiment, an object is illuminated with electromagnetic energy such as a laser beam having a wavelength substantially equal to a predetermined atmospheric absorption band such as 1.39 microns. The transmitted laser beam is modulated at a predetermined frequency and has a first phase. The phase of the reflected and returned laser beam is altered proportional to the distance of the object and has a second phase. The first phase of the transmitted signal and the second phase of the received signal are compared and used to determine the distance of the object from the device. The system may comprise a modified laser that is tuned to operate in an atmospheric absorption band. A method to identify range ambiguity is disclosed by periodically altering the modulation frequency from a first modulation frequency to a second modulation frequency.In the scanning LADAR embodiment, an object is scanned or illuminated with electromagnetic energy having a wavelength substantially equal to a predetermined atmospheric absorption band at a first time and detects the reflection of the beam at a second time. The difference in time from the transmission of the scanning beam and the detection of the reflection of the beam from the object is used to calculate the range of the object.
摘要:
A sensor system is provided having a precision tracking sensor element and a micro-lamellar spectrometer for determining the wavelength of an electromagnetic source such as a laser designator source. Acquisition sensor elements may be provided and mounted on a rotating base element that rotates about a first axis. The precision tracking sensor elements may be mounted on a hinged or pivoting element or gimbal on the housing and provided with drive means to permit a user to selectively manually or automatically direct it toward a scene target of interest detected by the acquisition sensor elements. At least one of the imaging elements in the precision tracking sensor or acquisition sensors is stacked micro-channel plate focal plane array element.