摘要:
A pressurized fluid system provides electrical power to a load and includes a fluid motor, a generator, an energy storage device and a controller. The system supplies fluid to the fluid motor, which provides a generator with power producing a voltage used to supply power to a load and provide energy to the energy storage device. The controller selects which of various sources within the system provides fluid to the fluid motor based on the operating mode of the system. When fluid supplied to the fluid motor is discontinued, the energy storage device discharges providing power to the load.
摘要:
A system (10) and method for automatically controlling braking of a train (38). The method includes applying a first degree of braking to the train during a first period of time, and then applying a second degree of braking to the train during a second time period following the first time period so that the train is slowed in a manner effective to limit a peak deceleration rate experienced by the train. The system includes a sensor (36) providing a signal indicative of an operating condition of a locomotive of the train requiring braking of the train, a memory (22) storing a braking schedule, and a processor (18) comprising logic executable for accessing the braking schedule stored in the memory responsive to the signal to automatically control braking of the locomotive according to the schedule.
摘要:
A method for automatically controlling a traction condition of a locomotive (16) configurable for operation by remote control includes establishing a communication link (18) between an operator control unit (12) offboard the locomotive and a remote control unit (14) onboard the locomotive to assert control of the locomotive. The method also includes sensing a loss of traction condition of the locomotive while the locomotive is being remotely operated. The method further includes automatically controlling an operation of the locomotive to correct the loss of traction condition.
摘要:
A locomotive (10) is operable in two or more distinct configurations, with the change in configuration being response to a configuration input signal (35). A locomotive configuration is represented by the set of end use device control signals (13) that are generated by the locomotive control systems (22) in response to the respective set of operational input values (27). For a given set of operational input values, a first set of end use device control signals is generated when a configuration input has a first value, and a second set of end use device control signals is generated when a configuration input has a second value. The configuration input variable is responsive to an emission profile associated with the locomotive location. A value of a locomotive emission parameter corresponding to the emission profile is monitored and saved in a storage device (e.g., 104).
摘要:
Method and communication system for a railroad train having at least one locomotive for automatically adjusting the communication system to provide effective communication of command data to control operation of the locomotive are provided. The system includes a transceiver on the locomotive. The system further includes at least one transceiver remote from the locomotive. A database may be provided for storing data relative to a plurality of communication schemes available to the communication system. A first monitor may be used for sensing a parameter indicative of the quality of the communications between the transceivers when the transceivers are operating under a first one of the available communication schemes and generating data indicative of communications quality. A processor in communication-with the monitor and the database may be configured to select a second communication scheme when the quality of the communications provided by the first communication scheme is not satisfactory to ensure that the command data will be reliably communicated with respect to the locomotive.
摘要:
A method and system (10) for self-directed operation of a locomotive (12) in a rail yard (82) using a control system (64) on the locomotive for controlling locomotive operations. The method includes establishing at least one operational area (e.g. 74, 76, 78) within the rail yard and associating an operational parameter with each area. The method also includes operating the locomotive using the control system and sensing a location of the locomotive within an operational area. The method further includes determining whether the locomotive is operating within the operational parameter established for the area of its location. If the locomotive is determined not to be operating within the operational parameter, an operation of the locomotive is automatically controlled to operate within the respective operational parameter, without operator input to the control system. The system includes a location detector (62) in communication with the control system to automatically control locomotive operation.