Abstract:
A fabrication process for a FinFET device is provided. The process begins by providing a semiconductor wafer having a layer of conductive material such as silicon. A whole-field arrangement of fins is then formed from the layer of conductive material. The whole-field arrangement of fins includes a plurality of conductive fins having a uniform pitch and a uniform fin thickness. Next, a cut mask is formed over the whole-field arrangement of fins. The cut mask selectively masks sections of the whole-field arrangement of fins with a layout that defines features for a plurality of FinFET devices. The cut mask is used to remove a portion of the whole-field arrangement of fins, the portion being unprotected by the cut mask. The resulting fin structures are used to complete the fabrication of the FinFET devices.
Abstract:
A stress-enhanced semiconductor device is provided which includes a substrate having an inactive region and an active region, a first-type stress layer overlying at least a portion of the active region, and a second-type stress layer. The active region includes a first lateral edge which defines a first width of the active region, and a second lateral edge which defines a second width of the active region. The second-type stress layer is disposed adjacent the second lateral edge of the active region.
Abstract:
An abutting apparatus of spring configuration machine which has a machine platform includes a first and second axial transmission mechanisms and an abutting assembly. The first axial transmission mechanism includes a first actuator, a first lead screw and a first sliding seat screwed with the first lead screw. The second axial transmission mechanism includes a second actuator fixed to the first sliding seat, a second lead screw driven to rotate by the second actuator and a second sliding seat screwed with the second lead screw and linearly moved relatively to the first sliding seat. Via the first and second axial transmission mechanisms, the abutting assembly fixed to the second sliding seat can make a 2-D movement in vertical and horizontal directions relative to the machine platform, such that the degree of freedom to adjust the abutting assembly can be enhanced significantly.
Abstract:
The halo implant technique described herein employs a halo implant mask that creates a halo implant shadowing effect during halo dopant bombardment. A first transistor device structure and a second transistor device structure are formed on a wafer such that they are orthogonally oriented to each other. A common halo implant mask is created with features that prevent halo implantation of the diffusion region of the second transistor device structure during halo implantation of the diffusion region of the first transistor device structure, and with features that prevent halo implantation of the diffusion region of the first transistor device structure during halo implantation of the diffusion region of the second transistor device structure. The orthogonal orientation of the transistor device structures and the pattern of the halo implant mask obviates the need to create multiple implant masks to achieve different threshold voltages for the transistor device structures.
Abstract:
MOS structures with remote contacts and methods for fabricating such MOS structures are provided. In one embodiment, a method for fabricating an MOS structure comprises providing a semiconductor layer that is at least partially surrounded by an isolation region and that has an impurity-doped first portion. First and second MOS transistors are formed on and within the first portion. The transistors are substantially parallel and define a space therebetween. An insulating material is deposited overlying the first portion of the semiconductor layer and at least a portion of the isolation region. A contact is formed through the insulating material outside the space such that the contact is in electrical communication with the transistors.
Abstract:
MOS structures with contact projections for lower contact resistance and methods for fabricating such MOS structures have been provided. In an embodiment, a method comprises providing a semiconductor substrate, fabricating a gate stack on the substrate, and forming a contact projection on the substrate. Ions of a conductivity-determining type are implanted within the substrate using the gate stack as an ion implantation mask to form impurity-doped regions within the substrate. A metal silicide layer is formed on the contact projection and a contact is formed to the metal silicide layer. The contact is in electrical communication with the impurity-doped regions via the contact projection.
Abstract:
Semiconductor devices having improved contact resistance and methods for fabricating such semiconductor devices are provided. These semiconductor devices include a semiconductor device structure and a contact. The contact is electrically and physically coupled to the semiconductor device structure at both a surface portion and a sidewall portion of the semiconductor device structure.
Abstract:
The techniques and technologies described herein relate to the automatic creation of photoresist masks for stress liners used with semiconductor based transistor devices. The stress liner masks are generated with automated design tools that leverage layout data corresponding to features, devices, and structures on the wafer. A resulting stress liner mask (and wafers fabricated using the stress liner mask) defines a stress liner coverage area that extends beyond the boundary of the transistor area and into a stress insensitive area of the wafer. The extended stress liner further enhances performance of the respective transistor by providing additional compressive/tensile stress.