摘要:
A method and apparatus for snooping both cache memory and associated buffer queues in a cache subsystem arrangement. Since there are usually several requests for cache data being handled at any given time under high performance operation of multiple processors, a cache arrangement includes at least one buffer queue for storing the address of the cache data line and the status of the cache data line, which facilitate keeping track of the data requests and handling them efficiently. In response to a snoop request, a snoop address is compared to the address stored in the buffer queue so as to provide a positive comparison result if the snoop address matches the address stored in the buffer queue, thereby indicating a snoop hit condition. The buffer queue of the cache arrangement further has a snoop hit bit for storing a record of the positive comparison result that indicates the snoop hit condition. Even if there is still a pending transaction involving the buffer queue, the snoop request of the cache is satisfied once the comparison result has been stored in the snoop hit bit of the buffer queue, thereby keeping the cache high performance for local code while at the same time providing efficient support for snoop requests.
摘要:
An apparatus including a cache subsystem arrangement for efficient management of input/output operations and of memory shared by processors in a multiprocessor system. The apparatus includes a central processing unit, an input/output device such as a network device or a display device for example, and the cache arrangement, which includes a coalescing buffer coupled with the data processing unit for receiving non-cacheable data from the processing unit. The non-cacheable data is combined in the coalescing buffer into non-cacheable data blocks. A system bus is coupled with the buffer and the input/output device for storing the non-cacheable data blocks to the input/output device. By combining the non-cacheable data before storage to the input/output device, the coalescing buffer provides higher performance in the multiprocessor system, since fewer bus transactions are issued for serial store operations and more stores can complete in a given amount of time than if they were issued singly on the bus. This is particularly advantageous in the multiprocessing system since multiple processors must compete for limited bus transaction bandwidth.
摘要:
In some embodiments, an apparatus includes a processor, an expander memory bridge location, a memory coupled to the expander memory bridge location, and a bus controller including intercept logic to intercept and block communication from the processor to the expander memory bridge location and to emulate an expander memory bridge. In some embodiments, a method includes intercepting and blocking a status request to a device, regardless of whether the device is installed, and responding to the status request.
摘要:
Embodiments of the invention are generally directed to apparatuses, methods, and systems for a computing system feature activation mechanism. In an embodiment, a computing system receives a remotely generated feature activation information. The computing system compares the remotely generated feature activation information with a built-in feature activation mechanism. In an embodiment, a feature of the computing system is activated if the remotely generated feature activation information matches the built-in feature activation mechanism. Other embodiments are described and claimed.
摘要:
Methods, apparatus, and systems for implementing coordinated idle power management in glueless and clustered systems. Components for facilitating coordination of package idle power state between sockets in a glueless system such as a server platform include a master entity in one socket (i.e., processor) and a slave entity in each socket participating in the power management coordination. Each slave collects idle status inputs from various sources and when the socket cores are sufficiently idle, it makes a request to the master to enter a deeper idle power state. The master coordinates global power management operations in response to the slave requests, including broadcasting a command with a target latency to all of the slaves to allow the processors to enter reduced power (i.e., idle) states in a coordinated manner. Communications between the entities is facilitated using messages transported over existing interconnects and corresponding protocols, enabling the benefits associated with the disclosed embodiments to be implemented using existing designs.
摘要:
In one embodiment, the present invention includes a multicore processor having a variable frequency domain including a plurality of cores and at least a portion of non-core circuitry of the processor. This non-core portion can include a cache memory, a cache controller, and an interconnect structure. In addition to this variable frequency domain, the processor can further have a fixed frequency domain including a power control unit (PCU). This unit may be configured to cause a frequency change to the variable frequency domain without draining the non-core portion of pending transactions. Other embodiments are described and claimed.
摘要:
In one embodiment, the present invention includes a multicore processor having a variable frequency domain including a plurality of cores and at least a portion of non-core circuitry of the processor. This non-core portion can include a cache memory, a cache controller, and an interconnect structure. In addition to this variable frequency domain, the processor can further have a fixed frequency domain including a power control unit (PCU). This unit may be configured to cause a frequency change to the variable frequency domain without draining the non-core portion of pending transactions. Other embodiments are described and claimed.
摘要:
In one embodiment, the present invention includes a multicore processor having a variable frequency domain including a plurality of cores and at least a portion of non-core circuitry of the processor. This non-core portion can include a cache memory, a cache controller, and an interconnect structure. In addition to this variable frequency domain, the processor can further have a fixed frequency domain including a power control unit (PCU). This unit may be configured to cause a frequency change to the variable frequency domain without draining the non-core portion of pending transactions. Other embodiments are described and claimed.
摘要:
Embodiments of the invention are generally directed to apparatuses, methods, and systems for a computing system feature activation mechanism. In an embodiment, a computing system receives a remotely generated feature activation information. The computing system compares the remotely generated feature activation information with a built-in feature activation mechanism. In an embodiment, a feature of the computing system is activated if the remotely generated feature activation information matches the built-in feature activation mechanism. Other embodiments are described and claimed.
摘要:
Processor implementation-specific instructions save a processor state in a system memory and attempt to correct the error. Control is then transferred to processor-independent instructions. Control is returned to the processor implementation-specific instructions which then return to an interrupted context of the processor by restoring the processor state.