摘要:
A low dielectric material is applied, as by spinning on, over the passivation layer of a semiconductor chip to fill the gaps which may exist between the top layer metal lines, and thereby minimize the possibility of cross talk which might otherwise be present between those lines.
摘要:
A low dielectric material is applied, as by spinning on, over the passivation layer of a semiconductor chip to fill the gaps which may exist between the top layer metal lines, and thereby minimize the possibility of cross talk which might otherwise be present between those lines.
摘要:
A method for forming a bipolar emitter using doped SOG which employs diffusion instead of implanting, and which produces a shallow, low-resistance emitter using a variety of dopants besides boron and phosphorus. A layer of doped SOG is spun over a predefined base region. Portions of the SOG layer are defined for removal and removed, leaving the collector and emitter contact areas exposed. The SOG layer is densified and the dopants are driven into the base to form the emitter.
摘要:
A low dielectric material is applied, as by spinning on, over the passivation layer of a semiconductor chip to fill the gaps which may exist between the top layer metal lines, and thereby minimize the possibility of cross talk which might otherwise be present between those lines.
摘要:
A low dielectric material is applied, as by spinning on, over the passivation layer of a semiconductor chip to fill the gaps which may exist between the top layer metal lines, and thereby minimize the possibility of cross talk which might otherwise be present between those lines.
摘要:
A low dielectric material is applied, as by spinning on, over the passivation layer of a semiconductor chip to fill the gaps which may exist between the top layer metal lines, and thereby minimize the possibility of cross talk which might otherwise be present between those lines.
摘要:
A selective sidewall diffusion process using doped SOG. A substrate is processed to form raised portions or pedestals, having sidewalls, and trenches. A first layer, either a doped SOG layer or undoped oxide layer, may be deposited onto the substrate adjacent the sidewalls. The first layer is densified. A second layer may be deposited on the first layer. The second layer is a doped SOG layer. The second layer is densified and the dopant is driven into the sidewalls to form shallow junctions.
摘要:
A low dielectric material is applied, as by spinning on, over the passivation layer of a semiconductor chip to fill the gaps which may exist between the top layer metal lines, and thereby minimize the possibility of cross talk which might otherwise be present between those lines.
摘要:
A low dielectric material is applied, as by spinning on, over the passivation layer of a semiconductor chip to fill the gaps which may exist between the top layer metal lines, and thereby minimize the possibility of cross talk which might otherwise be present between those lines.
摘要:
A method for composing a dielectric layer within an interconnect structure of a multilayer semiconductor device is disclosed. A layer of silica precursor material is first deposited on a silicon substrate. Without affecting its structure and porosity, the layer of silica precursor material is then dried; and the layer of silica precursor material becomes porous silica film. Subsequently, a protective layer, such as parylene, is deposited on top of the dried porous silica film. The thickness of the protective layer should be greater than the peak-valley planarization requirements of the silicon substrate surface. As a result, a composite porous silica film, which services as a dielectric layer within an interconnect structure, is formed. This composite porous silica film has a relatively low dielectric constant and is able to withstand damage from a standard CMP procedure.