Abstract:
For transparent electrodes formed by using a metal nanowire-based transparent conductive film, accomplished are simplification of processes necessary in patterning the transparent conductive film and improvement in patterning accuracy of the transparent electrodes formed by using the transparent conductive film. An ink for forming the transparent conductive film used for the transparent electrodes having a distance between the electrodes of 20 μm or more contains: metal nanowires, a photosensitive material; and a solvent. The metal nanowires have an average length of 1.5 times or less the distance between the electrodes.
Abstract:
The thiol group-containing colored compound includes a chromophore having absorption in a visible light region, a thiol group, and a spacer provided between the chromophore and the thiol group. The spacer is a chain alkylene group having 2 to 30 carbon atoms, a cyclic alkylene group having 3 to 30 carbon atoms, or a derivative of either alkylene group in which the number of carbon atoms in an additional structure of the alkylene group is equal to or less than the number of carbon atoms in the alkylene group.
Abstract:
Provided are metal nanowires having a high total light transmittivity that efficiently inhibit scattering of external light at a display screen such as a touch panel, and improve black floating prevention (photopic contrast) and electrode pattern non-visibility. Also provided are a transparent conductive film including the metal nanowires, a method for producing the transparent conductive film, a dispersion liquid including the metal nanowires, an information input device including the transparent conductive film, and an electronic device including the transparent conductive film. The metal nanowires include metal nanowire bodies and a colored compound adsorbed onto the metal nanowire bodies. The colored compound is a dye and is adsorbed in an amount of from 0.5 mass % to 10 mass % relative to the metal nanowire bodies.
Abstract:
Provided is a metal nanowire-containing transparent conductive film that can efficiently inhibit scattering of external light at a display screen such as a touch panel, and improve black floating prevention (photopic contrast) and electrode pattern non-visibility. Also provided are a method for producing the transparent conductive film, an information input device including the transparent conductive film, and an electronic device including the transparent conductive film. The transparent conductive film includes one or more metal nanowires and the number of metal nanowire bundle structures present in the transparent conductive film is 3 or fewer per each rectangular area region of 30 μm in height and 40 μm in width of the transparent conductive film.
Abstract:
A phthalocyanine-based complex compound is represented by general formula (1) shown below, where M in general formula (1) is any of Cu, Fe, Ti, V, Ni, Pd, Pt, Pb, Si, Bi, Cd, La, Tb, Ce, Be, Mg, Co, Ru, Mn, Cr, Mo, Sn, and Zn, and may be present or absent.
Abstract:
Provided is a transparent conductive film that suppresses deterioration of display characteristics due to reduced contrast and that has excellent long-term conductivity, even when exposed to harsh conditions. The transparent conductive film includes one or more metal nanowire bodies and a colored compound adsorbed onto the metal nanowire bodies. The colored compound includes a first dye that includes a macrocyclic π-conjugated moiety and a moiety having a functional group that exhibits adsorptivity with respect to a constituent metal of the metal nanowire bodies.
Abstract:
Provided are metal nanowires having a high total light transmittivity that efficiently inhibit scattering of external light at a display screen such as a touch panel, and improve black floating prevention (photopic contrast) and electrode pattern non-visibility. Also provided are a transparent conductive film including the metal nanowires, a method for producing the transparent conductive film, a dispersion liquid including the metal nanowires, an information input device including the transparent conductive film, and an electronic device including the transparent conductive film. The metal nanowires include metal nanowire bodies and a colored compound adsorbed onto the metal nanowire bodies. The colored compound is a dye and is adsorbed in an amount of from 0.5 mass % to 10 mass % relative to the metal nanowire bodies.