摘要:
A proximity detector is provided with an oscillating circuit generating cyclically an unsustained pseudo-oscillation. The detector includes a processing circuit having a comparator which compares the relaxation voltage of the oscillating circuit with a predetermined threshold and a logic circuit which generates control pulses with low duty ratio for a switch in series with the oscillating circuit and also an output signal as a function of the measurement pulses delivered by the comparator. The closure duration of the switch is substantially equal to half the pseudo-oscillation period.
摘要:
A circuit is provided for processing a pseudo-oscillatory signal generated by an oscillating circuit including a comparator and a logic circuit. The oscillating circuit has a first terminal connected to an energy source by a first switch and a second terminal referenced alternately to a potential substantially equal to half the high potential of the power supply and to the low potential of the power supply. This alternate reference is determined by a second switch controlled synchronously with the first switch by the logic circuit.
摘要:
In this process, during at least one phase of the treatment cycle, the gas outflow is increased or decreased locally in at least one marginal region of the packing. Application to drying/CO2 removal of atmospheric air intended to be distilled, or to the separation of gaseous mixtures by pressure modulated adsorption.
摘要:
The device comprises an adsorber (1) and three outlet capacities (2-4), first (8, 9) and second (10, 11) structure to establish bidirectional communication between the adsorber and the elution capacity (2) and the repressurization capacity (3), respectively, and third structure (14A, 15; 16) to establish unidirectional communication from the adsorber to the production capacity (4).
摘要:
.Iadd. .Iadd.8. A method for cooling a second gaseous mixture to low temperature and producing at least one constituent of said mixture in liquid phase, comprising:a. cooling and subjecting first gaseous mixture containing at least one component of said secong gaseous mixture, to a fractionate condensation under a first pressure,b. expanding at least two condensed fractions obtained during the fractionate condensation of said first gaseous mixture, reuniting the expanded condensed fractions with said first gaseous mixture under a second pressure lower than said first pressure, vaporizing and reheating the reunited fractions with said first gaseous mixture under said second pressure, by heat exchange with said second gaseous mixture undergoing cooling, and with said first gaseous mixture undergoing fractionate condensation, and recompressing said first gaseous mixture to said first pressure,c. reuniting under said first pressure said second gaseous mixture undergoing cooling with said first gaseous mixture undergoing fractionate condensation, when said gaseous mixture is in conditions of temperature and pressure such that a major portion of said constituent to be produced in liquid phase is condensed within said second gaseous mixture, and after the first condensed fraction of said first gaseous mixture has been withdrawn for expansion and vaporization, continuing the fractionate condensation of the mixture so obtained under said first pressure until there is obtained a last condensed fraction containing a major part of said constituent to be produced in liquid phase,d. expanding to said second pressure the last condensed fraction, and separating the last expanded fraction into a liquid portion expanded to a pressure lower than said second pressure and a residual gaseous portion for recompression with said first gaseous mixture, and withdrawing said last expanded liquid portion as a product stream, ande. prior to reuniting said first gaseous mixture and said second gaseous mixture, condensing at least partially said second gaseous mixture under a third pressure which is higher than said first pressure, and expanding said second gaseous mixture at least partially condensed to said first pressure. .Iaddend.
摘要:
The apparatus for the separation of a gas mixture by pressure swing adsorption (PSA) comprises at least one adsorber A and a first vessel T which can be selectively connected to the adsorber in order temporarily to store the gas which is extracted from the adsorber and reintroduced into it during a cycle, the vessel T having a fixed free internal volume V, a vertical main direction of height h, with the relationship 25.ltoreq.h.sup.3 /V.ltoreq.150, and the gas fraction entering and leaving the vessel T at its lower part, and remaining therein for a time which does not exceed 300 seconds. The apparatus is useful in the production of oxygen or hydrogen.
摘要翻译:用于通过变压吸附(PSA)分离气体混合物的装置包括至少一个吸附器A和第一容器T,其可以选择性地连接到吸附器,以便暂时存储从吸附器中提取并再次引入的气体 在一个循环期间,容器T具有固定的自由内部容积V,高度h的垂直主方向,关系25 u3 / V <150,以及进入和离开容器T的气体部分 在其下部,并在其中保持不超过300秒的时间。 该装置可用于生产氧气或氢气。
摘要:
In a pressure-swing adsorption-type gas separation unit, a distinct intermediate gas passageway is formed between a first water retaining bed (A) and a second separating adsorbent bed (B), a controlled heat flow being supplied to prevent the formation of a very cold area between both beds. The unit is particularly useful in the production of oxygen from air.
摘要:
According to this process, compressed air is cooled and purified by adsorption by passing same in a first direction through a mass of adsorbent material (8), then a residual gas from the distillation apparatus passes in opposite direction through this mass to regenerate same. During the entire regeneration, the residual gas is at a constant regeneration temperature which is between the temperature of the air entering into the mass of adsorbent material and at a temperature which is about 50.degree. C. above this temperature.
摘要:
Liquid oxygen of a low pressure column forms a bath 5 at the top of a heat exchanger 2 of the type having plates defining vertical passages 17, 18. This liquid is predistributed along every other passage 17 by a series of apertures 27 formed for example in the plates, and then is uniformly distributed in a fine manner in the same passages by a packing 24 so as to form a continuous running liquid film. The gaseous nitrogen of a medium pressure column is introduced into the remaining passages 18 and condensed by heat exchange with the oxygen which is vaporized.
摘要:
A separation process, involving an adsorber containing at least one adsorbent with an inlet and outflow, involves the following stages of the cycle:--stage I, repressurization from the low pressure of the cycle;--stages II and III during one of which the high pressure of the cycle is reached; and stage IV, depressurization/purging, during which the low pressure of the cycle is reached. Each stage (I to IV) involves a fixed gas flow (F) at one end of the adsorber and a free gas flow (.lambda.) at the other end of the adsorber, the fixed flows (F) addressing the inlet (E) and outlet (F) ends of the adsorber from one stage (I to IV) to the next. The process is particularly applicable to the production of oxygen from air.