摘要:
In a sputtering device with magnetic amplification, a magnetic field is generated by means of a permanent magnet system, whose lines of force run above and penetrate the sputtering surface, whereby the permanent magnet system is formed of two dosed, coaxial circular or oval rows (7, 8) of individual magnets (5, 5′ . . . , 6, 6′ . . . ) that are connected via a yoke (15), whereby the surface of the target (3) that faces away from the rows of permanent magnets (7, 8) is formed of two partial surfaces (3a, 3b) that form an angle to each other and whereby the edge (3c) that is formed by the two partial surfaces (3a, 3b) runs parallel to the two rows (7, 8) of permanent magnets (5, 5′ . . , 6, 6′ . . . ) and whereby an insert (14) made of ferromagnetic material is inserted between the magnetic yoke (15) and the surface of the target (3) that faces the magnetic yoke (15).
摘要:
A machine for coating a transparent substrate for the production of display screens comprises a coating chamber that has a modular design. Each of the modules 1 features a chamber section 2, a first support 3 that is arranged removably in or at the chamber section 2, and a second support 4 that is arranged removably at the first support 3. Whereas the first support 3 bears the cathodes, the second support 4 is formed as a cover at which are arranged the pumps for producing a vacuum in the coating chamber. Carriers 3 and 4 can be removed laterally from the chamber section 2 to such an extent that areas 11a, 11b accessible to persons can be formed between the module components. In this way, the components of the machine are readily accessible, for example for maintenance purposes. Work can be done simultaneously on the cathodes and in the chamber interior.
摘要:
Claimed is a sputtering target system comprising a plurality of backing plates to be individually cooled. Each backing plate is provided on its back side with a meandering groove that is closed off by a sealing plate. The sealing plate is welded around its circumference to the backing plate and at the same time is welded to at least one ridge located at a distance from the frame, which separates two grooved sections from one another. The sealing plate thus welded to the backing plate not only closes off the grooves to form a cooling channel, but also is used for reinforcement of the otherwise relatively flat backing plate.
摘要:
A sputtering cathode with a flat plate-shaped target (8) and a tub-shaped yoke (3) arranged behind the target (8), with center ridge (5) and with magnets (7,7′) for generating an enclosed tunnel of arc-shaped curved field lines (15,15′) in front of the target surface, as well as with three sheet metal cutouts (9,10,11) or groups of partial cutouts inserted into the plane between the target (8) and the end faces (12) of the tub rim of the yoke (3) facing the target (8), all the sheet metal cutouts (9,10,11) together form two gaps (a,b) extending roughly parallel to the end faces (12,13), wherein the magnets (7,7′) are each incorporated or inserted into the yoke bottom and the side surfaces of the magnets (7,7′) facing towards and away from the target (8) run flush with the yoke bottom.
摘要:
To be able to realize a relatively wide magnetron sputter cathode, it is proposed that on the vacuum side of a carrier (2) is disposed the sputter target (4) with a backing plate (3), which maintains a gap (14) from the carrier (2). The backing plate (3) is developed as a cooling plate. In it are located cooling means channels (15), which, via an inlet (16) through the carrier (2), are supplied with cooling fluid, which can flow out again via an outlet (17) through the carrier (2). On the atmospheric side is located a magnet configuration (5).
摘要:
An apparatus is disclosed for the coating of substrates (10) with thin films, having a vacuum chamber (1), a target (6) to be atomized, situated opposite the substrate (10) in the vacuum chamber (1), with magnets (19, 19′, 19″; 20, 20′, 20″) to produce a magnetic tunnel in front of the area of the target (6) to be atomized, an inlet (8) for a process gas into the process space (11), an anode (12), which is electrically insulated with respect to the vacuum chamber (1), and a current-voltage supply to produce a plasma in front of the target (6). The target (6) is shaped as a rotation-symmetrical body, which provides a ring-shaped enclosure around the substrate (10), wherein the magnets (19,19′, . . . ; 20,20′, . . . ) are supported on the side of the hollow cylindrical target (6), facing away from the substrate (10), and can move around the rotational axis (R) of the target (6). The substrate (10) is electrically insulated, with respect to the vacuum chamber (1), and a part of an insulator (13), configuring the anode (12), is supported on the bottom of the process space (1).