摘要:
A metallic object has a coating made of a thin metal oxide layer and nucleic acids or nucleic acid derivatives bonded thereto. The nucleic acid compounds have 5′-terminal or 3′-terminal molecule areas that are incorporated stably into the metal oxide layer. The unincorporated areas of the nucleic acid compounds that are not incorporated into the metal oxide layer are freely accessible for subsequent interactions with other molecules such as complementary nucleic acids having active ingredients attached thereto.
摘要:
A metallic object has a coating made of a thin metal oxide layer and nucleic acids or nucleic acid derivatives bonded thereto. The nucleic acid compounds have 5′-terminal or 3′-terminal molecule areas that are incorporated stably into the metal oxide layer. The unincorporated areas of the nucleic acid compounds that are not incorporated into the metal oxide layer are freely accessible for subsequent interactions with other molecules such as complementary nucleic acids having active ingredients attached thereto.
摘要:
The invention describes an article made from chitosan-coated metal, where an impermeable chitosan layer having a barrier action is present on the metal through electrochemical polarisation in a chitosan-containing solution. The incorporation of biologically active components into the chitosan coating enables the coating to be matched to various applications and the bio-compatibility of correspondingly modified surfaces to be increased. Metallic articles or surfaces coated in this way are used, for example, as material for medical implants.
摘要:
A biomimetically produced bone-analogous coating, comprising organic and inorganic main constituents, is suitable for coating metallic implant materials of any desired surfaces. The coating comprises a collagen matrix mineralized with calcium phosphate.
摘要:
A metallic object, having a metallic substrate of a valve metal or a valve metal alloy inclusive of intermetallic phases, and a thin polyphase oxide coating, is disclosed. The polyphase oxide coating has a metal oxide phase and at least one other organic and/or inorganic phase. The polyphase oxide coating is produced by bringing the metallic substrate into contact with an organic and/or inorganic component to be integrated into the polyphase oxide coating such that the inorganic and/or organic phases are present at or in the direct vicinity of the substrate surface and by simultaneously or subsequently anodically polarizing the substrate material in an electrolytic solution.
摘要:
The invention relates to an osteogenic composite matrix consisting of collagen and non-collagen components of an extracellular matrix (ECM-components), to a method for producing said matrix, to a method for producing an implant or a scaffold for tissue engineering which is provided with a coating formed by said osteogenic composite matrix and is used for stimulating and accelerating a hard tissue formation such as, for example. The implant osseointegration in bones. The inventive osteogenic composite matrix comprises a collagen and at least one non-collagen ECM component or the derivatives thereof, wherein the collagen component consists of non-crosslinked collagen fibers produced by fibrillogenesis and the non-collagen ECM component or the derivatives thereof are integrated into said collagen fibers.
摘要:
The invention concerns a process for producing a gradient coating of calcium phosphat phases and metal oxide phases on metallic implants, in particular made of titanium or titanium alloys, for use as dental, jaw or joint implants. A solution containing calcium ions and phosphate ions is used as electrolyte of which the pH is slightly acidic to approximately neutral. The substrate electrodes are alternately polarized cathodically and anodically. The layer deposited in a gratuated manner is adherent, has a fine structure and is distinguished by a high degree of biocompatibility.
摘要:
The invention relates to an osteogenic composite matrix consisting of collagen and non-collagen components of an extracellular matrix (ECM-components), to a method for producing said matrix, to a method for producing an implant or a scaffold for tissue engineering which is provided with a coating formed by said osteogenic composite matrix and is used for stimulating and accelerating a hard tissue formation such as, for example the implant osseointegration in bones. The inventive osteogenic composite matrix comprises a collagen and at least one non-collagen ECM component or the derivatives thereof, wherein the collagen component consists of non-crosslinked collagen fibres produced by fibrillogenesis and the non-collagen ECM component or the derivatives thereof are integrated into said collagen fibres.