Abstract:
Light projection systems using white light illumination. One embodiment provides a projection system using white light illumination. The projection system includes an illumination assembly configured to receive a white light input. A prism is configured to separate the white light input into color light inputs, redirect the color light inputs to respective modulators, and combine modulated color light inputs from the respective modulators into a white light output. An optical filter is configured to spatially Fourier transform the white light output to generate a filtered white light output. A projection lens assembly is configured to project the filtered white light output.
Abstract:
A handheld imaging device has a data receiver that is configured to receive reference encoded image data. The data includes reference code values, which are encoded by an external coding system. The reference code values represent reference gray levels, which are being selected using a reference grayscale display function that is based on perceptual non-linearity of human vision adapted at different light levels to spatial frequencies. The imaging device also has a data converter that is configured to access a code mapping between the reference code values and device-specific code values of the imaging device. The device-specific code values are configured to produce gray levels that are specific to the imaging device. Based on the code mapping, the data converter is configured to transcode the reference encoded image data into device-specific image data, which is encoded with the device-specific code values.
Abstract:
A tone-mapping function that maps input images of a high dynamic range into reference tone-mapped images of a relatively narrow dynamic range is generated. A luma forward reshaping function is derived, based on first bit depths and second bit depths, for forward reshaping luma codewords of the input images into forward reshaped luma codewords of forward reshaped images approximating the reference tone-mapped images. A chroma forward reshaping mapping is derived for predicting chroma codewords of the forward reshaped images. Backward reshaping metadata that is to be used by recipient devices to generate a luma backward reshaping function and a chroma backward reshaping mapping is transmitted with the forward reshaped images to the recipient devices. Techniques for the joint derivation of forward luma and chroma reshaping functions are also presented.
Abstract:
A handheld imaging device has a data receiver that is configured to receive reference encoded image data. The data includes reference code values, which are encoded by an external coding system. The reference code values represent reference gray levels, which are being selected using a reference grayscale display function that is based on perceptual non-linearity of human vision adapted at different light levels to spatial frequencies. The imaging device also has a data converter that is configured to access a code mapping between the reference code values and device-specific code values of the imaging device. The device-specific code values are configured to produce gray levels that are specific to the imaging device. Based on the code mapping, the data converter is configured to transcode the reference encoded image data into device-specific image data, which is encoded with the device-specific code values.
Abstract:
A tone-mapping function that maps input images of a high dynamic range into reference tone-mapped images of a relatively narrow dynamic range is generated. A luma forward reshaping function is derived, based on first bit depths and second bit depths, for forward reshaping luma codewords of the input images into forward reshaped luma codewords of forward reshaped images approximating the reference tone-mapped images. A chroma forward reshaping mapping is derived for predicting chroma codewords of the forward reshaped images. Backward reshaping metadata that is to be used by recipient devices to generate a luma backward reshaping function and a chroma backward reshaping mapping is transmitted with the forward reshaped images to the recipient devices. Techniques for the joint derivation of forward luma and chroma reshaping functions are also presented.
Abstract:
A handheld imaging device has a data receiver that is configured to receive reference encoded image data. The data includes reference code values, which are encoded by an external coding system. The reference code values represent reference gray levels, which are being selected using a reference grayscale display function that is based on perceptual non-linearity of human vision adapted at different light levels to spatial frequencies. The imaging device also has a data converter that is configured to access a code mapping between the reference code values and device-specific code values of the imaging device. The device-specific code values are configured to produce gray levels that are specific to the imaging device. Based on the code mapping the data converter is configured to transcode the reference encoded image data into device-specific image data, which is encoded with the device-specific code values.
Abstract:
A handheld imaging device has a data receiver that is configured to receive reference encoded image data. The data includes reference code values, which are encoded by an external coding system. The reference code values represent reference gray levels, which are being selected using a reference grayscale display function that is based on perceptual non-linearity of human vision adapted at different light levels to spatial frequencies. The imaging device also has a data converter that is configured to access a code mapping between the reference code values and device-specific code values of the imaging device. The device-specific code values are configured to produce gray levels that are specific to the imaging device. Based on the code mapping, the data converter is configured to transcode the reference encoded image data into device-specific image data, which is encoded with the device-specific code values.
Abstract:
A handheld imaging device has a data receiver that is configured to receive reference encoded image data. The data includes reference code values, which are encoded by an external coding system. The reference code values represent reference gray levels, which are being selected using a reference grayscale display function that is based on perceptual non-linearity of human vision adapted at different light levels to spatial frequencies. The imaging device also has a data converter that is configured to access a code mapping between the reference code values and device-specific code values of the imaging device. The device-specific code values are configured to produce gray levels that are specific to the imaging device. Based on the code mapping, the data converter is configured to transcode the reference encoded image data into device-specific image data, which is encoded with the device-specific code values.
Abstract:
A handheld imaging device has a data receiver that is configured to receive reference encoded image data. The data includes reference code values, which are encoded by an external coding system. The reference code values represent reference gray levels, which are being selected using a reference grayscale display function that is based on perceptual non-linearity of human vision adapted at different light levels to spatial frequencies. The imaging device also has a data converter that is configured to access a code mapping between the reference code values and device-specific code values of the imaging device. The device-specific code values are configured to produce gray levels that are specific to the imaging device. Based on the code mapping, the data converter is configured to transcode the reference encoded image data into device-specific image data, which is encoded with the device-specific code values.
Abstract:
A handheld imaging device has a data receiver that is configured to receive reference encoded image data. The data includes reference code values, which are encoded by an external coding system. The reference code values represent reference gray levels, which are being selected using a reference grayscale display function that is based on perceptual non-linearity of human vision adapted at different light levels to spatial frequencies. The imaging device also has a data converter that is configured to access a code mapping between the reference code values and device-specific code values of the imaging device. The device-specific code values are configured to produce gray levels that are specific to the imaging device. Based on the code mapping, the data converter is configured to transcode the reference encoded image data into device-specific image data, which is encoded with the device-specific code values.