摘要:
The present invention relates to a compound comprising a PYY peptide or a functional derivative thereof, which is coupled to a reactive group. Such a reactive group is capable of reacting on a blood component so as to form a stable covalent bond therewith. The present invention also relates to a conjugate comprising such a compound which is covalently bonded to a blood component. Moreover, the invention also relates to a method of enhancing, in a patient, the anti-obesity activity of a PYY peptide or functional derivative thereof.
摘要:
The present invention relates to a compound comprising a PYY peptide or a functional derivative thereof, which is coupled to a reactive group. Such a reactive group is capable of reacting on a blood component so as to form a stable covalent bond therewith. The present invention also relates to a conjugate comprising such a compound which is covalently bonded to a blood component. Moreover, the invention also relates to a method of enhancing, in a patient, the anti-obesity activity of a PYY peptide or functional derivative thereof.
摘要:
The present invention relates to a compound comprising a PYY peptide or a functional derivative thereof, which is coupled to a reactive group. Such a reactive group is capable of reacting on a blood component so as to form a stable covalent bond therewith. The present invention also relates to a conjugate comprising such a compound which is covalently bonded to a blood component. Moreover, the invention also relates to a method of enhancing, in a patient, the anti-obesity activity of a PYY peptide or functional derivative thereof.
摘要:
A method for protecting a peptide from peptidase activity in vivo, the peptide being composed of between 2 and 50 amino acids and having a C-terminus and an N-terminus and a C-terminus amino acid and an N-terminus amino acid is described. In the first step of the method, the peptide is modified by attaching a reactive group to the C-terminus amino acid, to the N-terminus amino acid, or to an amino acid located between the N-terminus and the C-terminus, such that the modified peptide is capable of forming a covalent bond in vivo with a reactive functionality on a blood component. In the next step, a covalent bond is formed between the reactive group and a reactive functionality on a blood component to form a peptide-blood component conjugate, thereby protecting said peptide from peptidase activity. The final step of the method involves the analyzing of the stability of the peptide-blood component conjugate to assess the protection of the peptide from peptidase activity.
摘要:
A secretin or secretin derivative protected against peptidase activity. The secretin or derivative comprises a peptidic sequence and a reactive group selected from the group consisting of succinimidyl and maleimido groups capable of reacting with an amino group, hydroxyl group or thiol group on a blood component to form a stable covalent bond. The reactive group is attached at a position along the peptidic sequence that provides, when conjugated to a blood component, a higher stability against peptidase degradation than the unconjugated secretin or derivative, and therefore an increased maintenance of the therapeutic activity compared to the unconjugated secretin or derivative. Such a compound is thus effective to provide a source of secretin having a high stability against peptidases. A method for synthesizing such a compound is also described.
摘要:
A method for protecting a peptide from peptidase activity in vivo, the peptide being composed of between 2 and 50 amino acids and having a C-terminus and an N-terminus and a C-terminus amino acid and an N-terminus amino acid is described. In the first step of the method, the peptide is modified by attaching a reactive group to the C-terminus amino acid, to the N-terminus amino acid, or to an amino acid located between the N-terminus and the C-terminus, such that the modified peptide is capable of forming a covalent bond in vivo with a reactive functionality on a blood component. In the next step, a covalent bond is formed between the reactive group and a reactive functionality on a blood component to form a peptide-blood component conjugate, thereby protecting said peptide from peptidase activity. The final step of the method involves the analyzing of the stability of the peptide-blood component conjugate to assess the protection of the peptide from peptidase activity.
摘要:
A method of synthesizing a modified therapeutic peptide capable of forming a peptidase-stabilized therapeutic peptide conjugate, the peptide having between 3 and 50 amino acids, is k. In a first step of the method, a therapeutic peptide having a carboxy terminal amino acid and amino terminal amino acid is synthesized. In a second step, pairs of cysteine residues present in the therapeutic peptide are sequentially and selectively oxidized to form disulfide bridges in the therapeutic peptide. In a third step, a protecting group is attached to remaining cysteine residues that do not form disulfide bridges in the therapeutic peptide. Finally, the peptide is coupled to a reactive group capable of reacting with amino groups, hydroxyl groups or thiol groups on a blood component to form a covalent bond therewith.
摘要:
Peptides exhibiting anti-viral and anti-fusogenic activity are modified to provide greater stability and improved half-life in vivo. The selected peptides include fusion inhibitors DP178 and DP107 and related peptides and analogs thereof. The modified peptides are capable of forming covalent bonds with one or more blood components, preferably a mobile blood component.
摘要:
Peptides exhibiting anti-viral and anti-fusogenic activity are modified to provide greater stability and improved half-life in vivo. The selected peptides include fusion inhibitors DP178 and DP107 and related peptides and analogs thereof. The modified peptides are capable of forming covalent bonds with one or more blood components, preferably a mobile blood component.
摘要:
Peptides exhibiting anti-viral and anti-fusogenic activity are modified to provide greater stability and improved half-life in vivo. The selected peptides include fusion inhibitors DP178 and DP107 and related peptides and analogs thereof. The modified peptides are capable of forming covalent bonds with one or more blood components, preferably a mobile blood component.