摘要:
A light-emitting chip includes a light-emitting part, a first color-converting part and a second color-converting part. The light-emitting part includes a first electrode and a second electrode, and generates first light of a first wavelength. The first color-converting part is formed on a light-emitting surface of the light-emitting part. The first color-converting part converts at least a portion of the first light into second light of a second wavelength. The second color-converting part is formed on the first color-converting part. The second color-converting part converts at least a portion of the first light into third light of a third wavelength that is shorter than the second wavelength. Thus, a fluorescent substance of a long wavelength and a fluorescent substance of a short wavelength are sequentially formed on a light-emitting surface of a light-emitting part, so that the color reproducibility of a light-emitting chip may be enhanced.
摘要:
A display device includes a first electrode, a second electrode facing the first electrode, a first layer of material disposed between the first electrode and the second electrode, a second layer of material disposed on the first layer of material, and a light source unit emitting blue light incident to the first electrode toward the second electrode. At least one color converting member receives the blue light and generate light having a wavelength different from the wavelength of the blue light. The second layer of material is positioned on the second electrode and is movable along with the second electrode by an attraction force between the first electrode and the second electrode.
摘要:
An inorganic light emitting device includes a first emission layer that includes a first electrode, a first dielectric layer, a first sub-emission layer, a second dielectric layer and a first auxiliary electrode sequentially stacked on a substrate, a second emission layer that includes the first auxiliary electrode and a third dielectric layer, a second sub-emission layer, a fourth dielectric layer and a second auxiliary electrode sequentially stacked on the first auxiliary electrode, and a third emission layer that includes the second auxiliary electrode and a fifth dielectric layer, a third sub-emission layer, a sixth dielectric layer and a second electrode sequentially stacked on the second auxiliary electrode.
摘要:
A liquid crystal display includes, among others, a light diffusion layer comprising a color conversion media layer and a non-conversion layer arranged on the second substrate and a backlight assembly to supply light to the first substrate and the second substrate. The backlight assembly supplies various wavelengths of lights, including blue light or UV ray. The blue rights through the liquid crystal layer enters the color conversion media layers and may generates red lights and green lights. In this case, blue lights go through non-conversion layer and diffuse and scatter out blue lights. The UV rays through the liquid crystal layer enters the color conversion media layers and may generates red light, green lights and blue lights.
摘要:
A display device using a microelectromechanical system (“MEMS”) element includes; a display panel including the MEMS element having at least three states, the at least three states including an on state, a half-on state, and an off state and a backlight unit which provides light to the display panel.
摘要:
A backlight assembly includes a flat fluorescent lamp and a bottom chassis. The flat fluorescent lamp includes a first substrate, a second substrate and an external electrode. The second substrate is combined with the first substrate to form a plurality of discharge spaces. The external electrode crosses the discharge spaces. The bottom chassis receives the flat fluorescent lamp and includes a protruded portion spaced apart from the flat fluorescent lamp by a distance that is different from a distance between a remaining portion of the bottom chassis and the flat fluorescent lamp.
摘要:
A flat fluorescent lamp including a first substrate, a second substrate facing the first substrate to provide a discharge region having a plurality of discharge spaces and a non-discharge region encompassing the discharge region. Fluorescent layers are arranged on the first and second substrates, and a sealing member is arranged in the non-discharge region shielded from the discharge spaces, and it couples the first and second substrates together.
摘要:
A display device includes a gate line, a data line, a switching transistor connected to the data line, a variable resistance unit, a first capacitor connected to the variable resistance unit and a micro-shutter connected to the resistance unit and the first capacitor. The switching transistor is controlled by a gate-on voltage supplied by the gate line, and a resistance of the variable resistance unit is changed based on a data voltage supplied to the variable resistance unit from the data line via the switching transistor. The micro-shutter electrode executes a shutoff operation based on a voltage at a connection node between the variable resistance unit and the first capacitor.
摘要:
A light guide unit includes a light guide plate and a plurality of light-exiting protrusions. The light guide plate includes a light-entering surface, an upper surface connected to the light-entering surface and a lower surface facing the upper surface. The light-exiting protrusions protrude from the upper surface of the light guide plate to have a cylindrical shape in which a cross-section size thereof increases in a direction away from the upper surface of the light guide plate, the light-exiting protrusions being disposed in a light control area which is turned on or off by a microelectromechanical system shutter. Light guided by the light guide unit to the light control area exits through the light-exiting protrusions.
摘要:
A display substrate includes a base substrate, a micro shutter, a first driving electrode, a second driving electrode, and a plurality of anchors. The micro shutter includes a flat portion having at least one opening, a main concave portion adjacent to the opening and extending in from the flat portion to a first depth, and at least one sub-concave portion extending in from a bottom surface of the main concave portion to second depth. The first driving electrode is connected to a first side of the micro shutter. The second driving electrode is connected to a second side of the micro shutter. The second side is positioned opposite to the first side. The anchors fix the first and second driving electrodes on the base substrate.