Abstract:
A method of manufacturing a semiconductor device includes forming a polysilicon layer on a trench isolation layer and a tunnel oxide layer formed on a semiconductor substrate, and doping the polysilicon layer with germanium or argon. The doped polysilicon layer is patterned to form a floating gate electrode layer pattern. A charge-trapping layer is formed on the floating gate electrode layer pattern, and a control gate electrode layer pattern is formed on the charge-trapping layer.
Abstract:
A method of manufacturing a gate in a flash memory device. The method includes forming a stacking structure including a tunnel oxide layer, a floating gate, a dielectric layer, and a control gate on a semiconductor substrate. The further includes removing a remaining portion of the tunnel oxide layer exposed by the control gate by wet etching to a degree that the semiconductor substrate is exposed, and forming an oxide layer covering the exposed portion of the semiconductor substrate and both sidewalls of the floating gate and the control gate.
Abstract:
The present invention relates to an acrylic copolymer having high heat resistance and high strength, and an optical film comprising the same, and more particularly, to an acrylic copolymer for optical films in which alkyl (meth)acrylate monomers; (meth)acrylate monomers comprising aromatic rings and/or aliphatic rings; and (meth)acrylamide monomers are included and polymerized. An acrylic copolymer according to the present invention is excellent in heat resistance while maintaining transparency. Further, an optical film comprising a compound resin including the acrylic copolymer has superior transparency and heat resistance and is excellent in formability, adhesion, retardation properties, and durability.
Abstract:
The present invention provides an optical film and a retardation film that each include an acryl resin, and 20 to 65 parts by weight of a graft copolymer including a conjugated diene rubber based on 100 parts by weight of the acryl resin, and an electronic device including the same.
Abstract:
The present invention relates to a resin composition for an optical film comprising a copolymer which includes an alkyl (meth)acrylate unit, a (meth)acrylate unit having a benzene ring, and a (meth)acrylic acid unit, wherein a content of a residual monomer is less than 2000 ppm in the resin composition and an optical film using the same.
Abstract:
Provided are a resin composition including an acryl-based copolymer resin including an alkyl(meth)acrylate-based monomer and an imide-based monomer, additionally copolymerizable with a styrene-based monomer, and a polycarbonate-based resin having a melt index (MI) of 30 g/10 min or more under conditions of a load of 1.2 kg and a temperature of 300° C., a polarizer protective film including the resin composition, and a liquid crystal display including the polarizer protective film. The polarizer protective film according to the present invention has excellent heat resistance, transparency, and optical properties.
Abstract:
The present invention relates to an acrylic copolymer resin containing: 1) an alklyl (meth)acrylate-based monomer; 2) a (meth)acrylate-based monomer containing an aliphatic ring and/or an aromatic ring; and 3) at least an imide-based monomer or a styrene-based monomer, to a resin composition containing said acrylic copolymer resin and a resin containing an aromatic ring and/or an aliphatic ring in the main chain thereof, to an optical film comprising said resin composition, and to a liquid crystal display device comprising said optical film. The optical film according to the present invention has excellent heat resistance, optical transparency, etc.
Abstract:
An image sensor may include a first substrate having circuitry including wires and a silicon layer formed on and/or over the first substrate to selectively contact the wires. The image sensor may include photodiodes bonded to the first substrate while contacting the silicon layer and electrically connected to the wires. Each unit pixel may be implemented having complicated circuitry without a reduction in photosensitivity. Additional on-chip circuitry may also be implanted in the design.
Abstract:
Provided is a method of preparing a resin composition for an optical film. The method includes forming a four-component copolymer by reacting an alkyl(meth)acrylate-based monomer, an acrylate-based monomer containing a benzene ring, and a (meth)acrylic acid monomer by using a continuous bulk polymerization method; and forming a resin composition for an optical film by removing unreacted monomer and solvent from a reaction product in a devolatilizer.
Abstract:
The present invention relates to acryl-based copolymers including an alkyl(meth)acrylate-based monomer; a (meth)acrylate-based monomer containing an aromatic ring; and a maleimide-based monomer, a resin composition including the same, and an optical film prepared by using the same.