摘要:
An apparatus and method are provided for motion artifact detection and correction, where an apparatus includes a scanning device for receiving two-dimensional image slices of an object, a rendering device in signal communication with the scanning device for rendering a three-dimensional volume representation of the two-dimensional image slices, and a correction device in signal communication with the rendering device for correcting motion artifacts within the three-dimensional volume representation; and a corresponding method for detecting motion artifacts within scan data of a region comprising an object includes creating a three-dimensional representation with volume elements of the region based on the scan data, analyzing the volume elements along a boundary of the object, and determining the existence of a motion artifact in response to the analyzing.
摘要:
Virtual navigation (2255) and examination of virtual objects are enhanced using methods of insuring that an entire surface to be examined has been properly viewed. A user interface (FIG. 23) identifies regions which have not been subject to examination and provides a mechanism (2250) to route the user to these regions in the 3D display. Virtual examination is further improved by the use of measuring disks (905) to enhance quantitative measurements such as diameter, distance, volume and angle. Yet another enhancement to the virtual examination of objects is a method of electronic segmentation, or cleaning, which corrects for partial volume effects occurring in an object.
摘要:
A computer-assisted detection method is provided for detecting suspicious locations of lesions in the volumetric medical images. The method includes steps of features extraction and fusion. The first step is computing gradient feature for extraction of the layer of Partial Volume Effect (LPVE) between different tissues that related to specific organs. The LPVE will combine with the result of voxel classification to fulfill the task of tissue classification. After tissue classification, the contour of tissue boundary is determined. The gradient feature is also used to determine the direction that intensity changes. This direction that intensity changes most dramatically serves as the normal vector for voxel on the contour of the tissue boundary. The second step is to determine a local surface patch on the contour for each voxel on the contour. A local landmark system is then created on that patch and the so-called Euclidean Distance Transform Vector (EDTV) is computed based on those landmarks. The EDTV is the basic shape feature for lesion detection whose development and invasion results abnormal shape change on the tissue boundary. A vector classification algorithm for pattern recognition based on EDTVs is also provided. The voxel on the contour of tissue boundary can be grouped into areas based on similar pattern to form lesion patch and local lesion volume. That area will further be analyzed for estimation of the likelihood of lesion.
摘要:
A system (300, 400, 800) and method (100, 200) are provided for building a digital sample library of lesions or cancers from medical images, the system (300) including an image scanner (310), image visualization or reviewing equipment (320) in signal communication with the image scanner, a digital sample library database (332), and a network for data communication connected between the library, the reviewing equipment, and the at least one scanner; and the method (100) including acquiring patient medical images (112), detecting target lesions in the acquired patient medical images (114, 116, 118), extracting digital samples (120) of the detected target lesions, collecting pathological and histological results (124, 126) of the detected target lesions, collecting diagnostic results of the detected target lesions (128), performing model selection and feature extraction (122) for each digital sample of a lesion, and storing (130) each extracted digital sample for library evolution.
摘要:
A method of computer aided treatment planning is performed by generating and manipulating a three dimensional (3D) image of a region which includes at least one anatomical structure for which treatment, such as surgery, biopsy, tissue component analysis, prosthesis implantation, radiation, chemotherapy and the like, is contemplated. A virtual intervention, which simulates at least a portion of the contemplated treatment, is performed in the 3D image. The user can then determine the effect of the intervention and interactively modify the intervention for improved treatment results. Preferably, a warning is automatically provided if the intervention poses a risk of detrimental effect. The user can navigate through the contemplated region in the 3D image and assess the results. The treatment plans can be saved for comparison and post treatment evaluation.
摘要:
A system (100) and corresponding method for vessel segmentation are provided, the system having an adapter (112, 128, 130) for receiving image data, a processor (102) in signal communication with the input adapter, a pre-processing unit (170) in signal communication with the processor for pre-processing the received image data, and a vessel segmentation unit (180) in signal communication with the processor for segmenting vessels using pre-processed data; and the corresponding method including receiving image data, pre-processing the received data, and segmenting vessels responsive to the pre-processed data.
摘要:
Methods for generating a three-dimensional visualization image of an object, such as an internal organ, using volume visualization techniques are provided. The techniques include a multi-scan imaging method; a multi-resolution imaging method; and a method for generating a skeleton of a complex three dimension object. The applications include virtual cystoscopy, virtual laryngoscopy, virtual angiography, among others.
摘要:
Methods for generating a three-dimensional visualization image of an object, such as an internal organ, using volume visualization techniques are provided. The techniques include a multi-scan imaging method; a multi-resolution imaging method; and a method for generating a skeleton of a complex three dimension object. The applications include virtual cystoscopy, virtual laryngoscopy, virtual angiography, among others.
摘要:
Methods for generating a three-dimensional visualization image of an object, such as an internal organ, using volume visualization techniques are provided. The techniques include a multi-scan imaging method; a multi-resolution imaging method; and a method for generating a skeleton of a complex three dimension object. The applications include virtual cystoscopy, virtual laryngoscopy, virtual angiography, among others.
摘要:
A computer based system and method of visualizing a region using multiple image data sets is provided. The method includes acquiring first volumetric image data of a region and acquiring at least second volumetric image data of the region. The first image data is generally selected such that the structural features of the region are readily visualized. At least one control point is determined in the region using an identifiable structural characteristic discernable in the first volumetric image data. The at least one control point is also located in the at least second image data of the region such that the first image data and the at least second image data can be registered to one another using the at least one control point. Once the image data sets are registered, the registered first image data and at least second image data can be fused into a common display data set. The multiple image data sets have different and complimentary information to differentiate the structures and the functions in the region such that image segmentation algorithms and user interactive editing tools can be applied to obtain 3d spatial relations of the components in the region. Methods to correct spatial inhomogeneity in MR image data is also provided.