摘要:
A method for preparing a class of highly stabilized and soil-dispersible nanoparticles and using the nanoparticles as a remediation technology for immobilizing toxic metals at toxic metal contaminated sites. The method employs a composition containing select polysaccharides (starch or cellulose) as a stabilizer for the nanoparticles in a liquid carrier, and results in suspensions of nanoparticles of desired size and mobility in water, soils or sediments. The stabilizer can facilitate controlling the dispersibility of the nanoparticles in the liquid carrier. An effective amount of the composition is delivered to a contaminated site so that the nanoparticles can immobilize one or more toxic metals of the contaminated site.
摘要:
A method for preparing a class of highly stabilized and soil-dispersible nanoparticles and using the nanoparticles as a remediation technology for immobilizing toxic metals at toxic metal contaminated sites. The method employs a composition containing select polysaccharides (starch or cellulose) as a stabilizer for the nanoparticles in a liquid carrier, and results in suspensions of nanoparticles of desired size and mobility in water, soils or sediments. The stabilizer can facilitate controlling the dispersibility of the nanoparticles in the liquid carrier. An effective amount of the composition is delivered to a contaminated site so that the nanoparticles can immobilize one or more toxic metals of the contaminated site.
摘要:
A stabilized, chemically reactive, metallic nano-material effective for degradation of chlorinated organic compounds in soils, sediments and groundwater. The nano-material is composed of a magnetic metal nanoparticle and a carbohydrate stabilizer bound to the nanoparticle. The preferred metal nanoparticle is iron and the preferred carbohydrate stabilizer is either a starch or a water soluble cellulose such as sodium carboxymethyl cellulose. The nanoparticle may be either mono-metallic, bi-metallic or multi-metallic in nature, but is preferably bi-metallic wherein it is coated with a secondary catalytic metal coating, preferably palladium. A method of making the metallic nano-material is further disclosed wherein a solution of the metal nanoparticle and carbohydrate stabilizer is prepared, and the nanoparticle is then reduced under inert conditions. A process for reductive dechlorination of chlorinated organic compounds is also disclosed wherein the reduced magnetic metal nanoparticle is prepared, and then contacted with a chlorinated organic compound to dechlorinate the compound. Preferably, the nano-material is injected into a site such as soil subsurface or groundwater contaminated with a chlorinated organic compound to provide in-situ dechlorination.
摘要:
A stabilized, chemically reactive, metallic nano-material effective for degradation of chlorinated organic compounds in soils, sediments and groundwater. The nano-material is composed of a magnetic metal nanoparticle and a carbohydrate stabilizer bound to the nanoparticle. The preferred metal nanoparticle is iron and the preferred carbohydrate stabilizer is either a starch or a water soluble cellulose such as sodium carboxymethyl cellulose. The nanoparticle may be either mono-metallic, bi-metallic or multi-metallic in nature, but is preferably bi-metallic wherein it is coated with a secondary catalytic metal coating, preferably palladium. A method of making the metallic nano-material is further disclosed wherein a solution of the metal nanoparticle and carbohydrate stabilizer is prepared, and the nanoparticle is then reduced under inert conditions. A process for reductive dechlorination of chlorinated organic compounds is also disclosed wherein the reduced magnetic metal nanoparticle is prepared, and then contacted with a chlorinated organic compound to dechlorinate the compound. Preferably, the nano-material is injected into a site such as soil subsurface or groundwater contaminated with a chlorinated organic compound to provide in-situ dechlorination.
摘要:
A method of removing toxic compounds from water comprises the steps of providing a polymeric ligand exchanger having a chelating resin containing nitrogen electron donor atoms and a transition metal ion bonded with the nitrogen donor atoms on the surface of the chelating resin, and contacting water containing a toxic compound with the polymeric ligand exchanger to remove the toxic compound from the water. The preferred metal ion is a cupric ion, and the preferred toxic compound to be removed from water is arsenic. The method further includes the step of regenerating the polymeric ligand exchanger with brine and the step of treating the brine used to regenerate the polymeric ligand exchanger with iron chloride to remove arsenate therefrom so that the brine may be re-used in the system to reduce the overall volume of waste material.
摘要:
Phosphates and chromates are selectively removed from contaminated water by a new class of sorbent, referred to as a Polymeric Ligand Exchanger (PLE). The exchanger bed comprising a styrene-divinylbenzene or polymethacrylate matrix having an electrically neutral chelating functional group with nitrogen or oxygen donor atoms, and a Lewis-acid type metal cation, such as copper, bonded to the chelating functional group in a manner that the positive charges of the metal cation are not neutralized. PLEs are very selective toward phosphates and chromates, chemically stable, and also amenable to efficient regeneration.
摘要:
A method for preparing highly stabilized and dispersible zero valent iron nanoparticles and using the nanoparticles as a remediation technology against inorganic chemical toxins in contaminated sites. The method employs a composition containing select polysaccharides (starch or cellulose) as a stabilizer for the iron nanoparticles in a liquid carrier, and results in suspensions of iron nanoparticles of desired size and mobility in water, brine, soils or sediments. The stabilizer facilitates controlling the dispersibility of the iron nanoparticles in the liquid carrier. An effective amount of the composition is delivered to a contaminated site so that the zero valent iron nanoparticles can remediate one or more toxins such as an arsenate, a nitrate, a chromate, or a perchlorate in the contaminated site.
摘要:
A method for preparing highly stabilized and dispersible zero valent iron nanoparticles and using the nanoparticles as a remediation technology against inorganic chemical toxins in contaminated sites. The method employs a composition containing select polysaccharides (starch or cellulose) as a stabilizer for the iron nanoparticles in a liquid carrier, and results in suspensions of iron nanoparticles of desired size and mobility in water, brine, soils or sediments. The stabilizer facilitates controlling the dispersibility of the iron nanoparticles in the liquid carrier. An effective amount of the composition is delivered to a contaminated site so that the zero valent iron nanoparticles can remediate one or more toxins such as an arsenate, a nitrate, a chromate, or a perchlorate in the contaminated site.