Method for converting an organic material into a catalyst for biological hydrosynthesis

    公开(公告)号:US12059673B2

    公开(公告)日:2024-08-13

    申请号:US17472854

    申请日:2021-09-13

    摘要: Method for converting organic material into catalyst for biological hydrosynthesis, comprising providing organic material comprising at least one source of readily available carbon, at least one complex carbon-containing compound and at least one source of protein and contacting the organic material with preparatory catalyst is provided. The organic material is subjected to a size reduction process to produce size-reduced organic material and a solid to liquid ratio of the size-reduced organic material is adjusted to form organic material slurry. The organic material slurry is subjected to a fermentation process to produce amended organic material, by applying a process catalyst to at least a portion of the organic material slurry. A liquid is recovered from the amended organic material and transferred to a fermentation chamber, where it is subjected to a fermentation process to produce amended liquid by applying balancing catalyst to the liquid. The amended liquid is the catalyst.

    Biodegrading Recalcitrant To Biodegradation Organic Substances

    公开(公告)号:US20240182339A1

    公开(公告)日:2024-06-06

    申请号:US18438494

    申请日:2024-02-11

    摘要: A composition for stimulating the production and excretion of a lignolytic enzyme in a microorganism for degrading harmful substances and/or in the manufacturing of easily degradable ester containing plastics or articles made of ester containing plastic. The composition mainly includes tributyrin, triolein, fish oil, 16-hydroxyhexadecanoic acid, n-aliphatic primary fatty alcohols, polycaprolactone, aliphatic polyesters, linolenic acid, linoleic acid, alpha linolenic acid, plant polyesters, cutin, cutin derivatives, cutin monomers, omega hydroxy acids, 16-hydroxy palmitic acid, 9,16-dihydroxypalmitic acid, 10,16-dihydroxypalmitic acid, C18-hydroxy oleic acid, 9,10-epoxy-18-hydroxy stearic acid, 9,10, 18-trihydroxystearate, suberin, cork, fruit skins, vegetable skins, and their constituents and derivatives, hydroxy fatty acids, 16-hydroxy palmitic acid, 18-hydroxy stearic acid, juniperic acid, hexadecanol, linseed oil, perilla oil, amides, acetamide and N-acetyl amide, zinc, zinc salts, butyrate, acetate, lactate, manganese peroxidase, and carbamide peroxide.

    METHOD FOR REMEDIATING PETROLEUM HYDROCARBON CONTAMINATION IN GROUNDWATER

    公开(公告)号:US20240024936A1

    公开(公告)日:2024-01-25

    申请号:US18203767

    申请日:2023-05-31

    摘要: The invention relates to a method for microbial remediation of underground water petroleum hydrocarbon contamination by regulating soil buffer capability, which comprises detecting the soil particle size of contaminated site soil, dividing the contaminated site soil into coarse-grained soil and fine-grained soil; dividing the contaminated site soil into high buffer capacity soil and low buffer capacity soil; and adjusting the composition and ratio of a biostimulant solution added to the contaminated site soil based on the classification of the contaminated site soil. The detecting step includes classifying soil with a particle size between 0.075 mm and 60 mm and a mass greater than or equal to 50% of the total mass as coarse-grained soil; and classifying soil with a particle size not greater than 0.075 mm and a mass greater than or equal to 50% as fine-grained soil.

    Method of in-situ remediation of arsenic-contaminated soil

    公开(公告)号:US11738380B2

    公开(公告)日:2023-08-29

    申请号:US16737871

    申请日:2020-01-08

    IPC分类号: C12N1/20 B09C1/10 C12P3/00

    摘要: This invention relates to a method of in-situ remediation of arsenic-contaminated soil, comprising the following steps: inoculating a bacterial strain, Pseudomonas putida MnB1 in a culture medium where an addition amount of the bacterial strain accounts for 2-10% (v/v) of the culture medium; shaking the culture medium with the bacterial strain at a rotation speed of 100-180 rpm at 15-35° C. for 1-5 days under an aerobic condition, thereby yielding an enriched bacterial strain; and adding manganese carbonate, ammonium ferrous sulfate, sodium citrate, a yeast extract and the enriched bacterial strain to arsenic contaminated soil; adding water to the soil until the soil has a moisture content of 50-70%, stirring the soil for 5-30 minutes, and culturing the bacterial strain in the soil under an aerobic/microaerobic condition at 10-40° C. for 2-6 weeks.