摘要:
The present invention relates to a scanning micromirror for optical communications. The scanning micromirror comprises an outer frame having an aperture therein, an inner frame located within the aperture of the outer frame and having an aperture therein, an optical reflecting means located within the aperture of the inner frame, a plurality of first torsion springs connected between an inner wall of the outer frame and an outer wall of the inner frame, for supporting the inner frame, a plurality of second torsion springs connected between the inner wall of the inner frame and the optical reflecting means, for supporting the optical reflecting means, first comb-type electrostatic actuators for applying electrostatic torque by which the inner frame is rotated about an axis of the first torsion springs, and second comb-type electrostatic actuators for applying electrostatic torque by which the optical reflecting means is rotated about an axis of the second torsion springs. Therefore, as the present invention uses vertical comb-type electrostatic actuators, an available rotation angle can be made large compared to a conventional case using a parallel-plate type electrostatic actuator. As the vertical asymmetry of the fixed combs and the movable combs are large, a large rotation angle can be obtained in non-resonant mode as well as resonant mode.
摘要:
Disclosed is a a method of fabricating a MEMS device by means of surface micromachining without leaving any stiction or residues by etching silicon oxide of a sacrificial layer, which is an intermediate layer between a substrate and a microstructure, rather than by etching silicon oxide of a semiconductor device. The method according to the invention includes the steps of supplying alcohol vapor bubbled with anhydrous HF, maintaining a temperature of the supplying device and a moving path of the anhydrous HF and the alcohol to be higher than a boiling point of the alcohol, performing a vapor etching by controlling a temperature and a pressure to be within the vapor region of a phase equilibrium diagram of water, and removing silicon oxide of a sacrificial layer on a lower portion of the microstructure.
摘要:
The present invention relates to a micro electro mechanical system (MEMS); and, more particularly, to a micro pump used in micro fluid transportation and control and a method for fabricating the same. The micro pump according to the present invention comprises: trenches formed in a silicon substrate in order to form a pumping region including a main pumping region and an auxiliary pumping region; channels formed on both sides of the pumping region; a flow prevention region having backward-flow preventing layers to resist a fluid flow; inlet/outlet regions formed at each of the channels which are disposed on both ends of the pumping region; an outer layer covering the trenches of the silicon substrate and opening portions of the inlet/outlet regions; and a thermal conducting layer formed on the outer layer and over the main pumping region so that a pressure of the fluid in the main pumping region is increased by the thermal conducting layer.
摘要:
The present invention relates to a method for forming a diffusion barrier layer, the method comprising the steps of: forming an insulation membrane having an opening for exposing a diffusion region to a silicon substrate formed with the diffusion region of a predetermined conductivity; vacuum-evaporating a metal of high melting point to surface and sides of the insulation membrane and to an upper area of the diffusion region, to thereby form a metal layer; and forming on the metal layer a low resistance layer and a diffusion barrier layer according to first and second quick heating treatment steps under nitric or ammoniac atmosphere. Accordingly, the low resistance layer can be thinned out while the diffusion prevention layer can be quickly formed to thereby improve diffusion prevention characteristic and to reduce stress from an interface with the semiconductor substrate. Furthermore, the interface between the silicon substrate and the low resistance layer can be made even to thereby reduce volume change of the low resistance layer, so that junction leakage can be prevented.
摘要:
Provided is a method for manufacturing a floating structure of a MEMS. The method for manufacturing a floating structure of a microelectromechanical system (MEMS), comprising the steps of: a) forming a sacrificial layer including a thin layer pattern doped with impurities on a substrate; b) forming a support layer on the sacrificial layer; c) forming a structure to be floated on the support layer by using a subsequent process; d) forming an etch hole exposing both side portions of the thin layer pattern; and e) removing the sacrificial layer through the etch hole to form an air gap between the support layer and the substrate.
摘要:
Provided are a micro gas sensor for measuring a gas concentration configured to achieve a high heating and cooling rate of a gas sensitive layer, achieve temperature uniformity, and achieve durability against thermal impact and mechanical impact; and a method for manufacturing the micro gas sensor. The micro gas sensor includes: a vacuum cavity disposed in a substrate; a support layer covering the vacuum cavity; a sealing layer sealing the support layer and the vacuum cavity; a micro heater disposed on the sealing layer; a plurality of electrodes disposed on the micro heater, insulated from the micro heater; and a gas sensitive layer covering the electrodes.