摘要:
Method and apparatus are disclosed for checking the resistance of antifuse elements in an integrated circuit. A voltage based on the resistance of an antifuse element is compared to a voltage based on a known resistance, and an output signal is generated whose binary value indicates whether the resistance of the antifuse element is higher or lower than the known value of resistance. The method and apparatus are useful in verifying the programming of antifuse elements.
摘要:
Method and apparatus are disclosed for checking the resistance of antifuse elements in an integrated circuit. A voltage based on the resistance of an antifuse element is compared to a voltage based on a known resistance, and an output signal is generated whose binary value indicates whether the resistance of the antifuse element is higher or lower than the known value of resistance. The method and apparatus are useful in verifying the programming of antifuse elements.
摘要:
Method and apparatus are disclosed for reducing antifuse programming time by connecting the programming voltage to the electrode of the antifuse element that has roughened polysilicon.
摘要:
An integrated circuit memory device has a plurality of nonvolatile programmable elements which are used to store a pass/fail status bit at selected milestones in a test sequence. At selected points in the test process an element may be programmed to indicate that the device has passed the tests associated with the selected point in the process. Prior to performing further tests on the device, the element is read to verify that it passed previous tests in the test process. If the appropriate elements are not programmed, the device is rejected. A rejected device may be retested according to the previous test steps. Laser fuses, electrically programmable fuses or antifuses are used to store test results. The use of electrically writeable nonvolatile memory elements allows for programming of the elements after the device has been packaged.
摘要:
An integrated circuit memory device has a plurality of nonvolatile programmable elements which are used to store a pass/fail status bit at selected milestones in a test sequence. At selected points in the test process an element may be programmed to indicate that the device has passed the tests associated with the selected point in the process. Prior to performing further tests on the device, the element is read to verify that it passed previous tests in the test process. If the appropriate elements are not programmed, the device is rejected. A rejected device may be retested according to the previous test steps. Laser fuses, electrically programmable fuses or antifuses are used to store test results. The use of electrically writeable nonvolatile memory elements allows for programming of the elements after the device has been packaged.
摘要:
An antifuse bank includes a bank of self-decoupling anti fuse circuits. The anti fuse circuits are programmed according to a pattern of address bits by blowing antifuses corresponding to bits of the address. The antifuses are blown by applying a high voltage across the antifuse. As each antifuse is blown, its resistance drops and current through the antifuse increases. The self-decoupling circuit detects the increased current flow and, when the anti fuse resistance is sufficiently low, limits current flow through the anti fuse. The antifuse thus does not load the high voltage source as other antifuses are blown.
摘要:
An antifuse bank includes a bank of self-decoupling antifuse circuits. The antifuse circuits are programmed according to a pattern of address bits by blowing antifuses corresponding to bits of the address. The antifuses are blown by applying a high voltage across the antifuse. As each antifuse is blown, its resistance drops and current through the antifuse increases. The self-decoupling circuit detects the increased current flow and, when the antifuse resistance is sufficiently low, limits current flow through the antifuse. The antifuse thus does not load the high voltage source as other antifuses are blown.
摘要:
The present disclosure provides semiconductor devices and methods, systems, and apparatus for testing and operating the same. A semiconductor memory device includes data storage elements and a repair circuit. The data storage elements include primary data storage elements and one or more redundant data storage elements, the primary data storage elements having respective addresses for memory access operations. The repair circuit is programmable by another semiconductor device separate from the memory device to recognize a malfunctioning address of the primary data storage elements and the programmed repair circuit is configured to reroute memory access from a primary data storage element having the recognized malfunctioning address to a corresponding redundant data storage element.
摘要:
A first semiconductor chip is provided. The first semiconductor chip is operable to be incorporated along with at least a second semiconductor chip of the same type into an integrated circuit device within in a single package. The integrated circuit device has a common address path for the first and second semiconductor chips. The first semiconductor chip includes a configurable addressing circuit operable to be configured so that the first semiconductor chip responds to a predetermined range of addresses in the common address path of the integrated circuit device, to decode an address conveyed in the common address path of the integrated circuit device, and to generate a selection signal if the address conveyed in the common address path falls within the predetermined range of addresses.
摘要:
The present disclosure provides semiconductor devices and methods, systems, and apparatus for testing and operating the same. A semiconductor memory device includes data storage elements and a repair circuit. The data storage elements include primary data storage elements and one or more redundant data storage elements, the primary data storage elements having respective addresses for memory access operations. The repair circuit is programmable by another semiconductor device separate from the memory device to recognize a malfunctioning address of the primary data storage elements and the programmed repair circuit is configured to reroute memory access from a primary data storage element having the recognized malfunctioning address to a corresponding redundant data storage element.