Abstract:
A one-time programmable device includes a controller, a protection system, a static storage element and a latch, which can be referred to as a latch-based one-time programmable (OTP) element. In one example, the static storage element comprises a thin gate-oxide that acts as a resistance element, which, depending on whether its blown, sets the latch into one of two states.
Abstract:
A one-time programmable device includes a controller, a protection system, a static storage element and a latch, which can be referred to as a latch-based one-time programmable (OTP) element. In one example, the static storage element includes a thin gate-oxide that acts as a resistance element, which, depending on whether its blown, sets the latch into one of two states.
Abstract:
The present invention relates to a high voltage switch used with a one-time programmable memory device and a method of setting a state of a one-time programmable memory device using such a high voltage switch. The memory device includes a plurality of one time programmable memory cells arranged in an array and adapted to be programmed using a high voltage, wherein each of the memory cells includes at least one storage element and two gated fuses connected to the storage element. A high voltage switch is connected to at least one of the memory cells and is adapted to switch in a high voltage.
Abstract:
The present invention relates to a high voltage switch used with a one-time programmable memory device and a method of setting a state of a one-time programmable memory device using such a high voltage switch. The memory device includes a plurality of one time programmable memory cells arranged in an array and adapted to be programmed using a high voltage, wherein each of the memory cells includes at least one storage element and two gated fuses connected to the storage element. A high voltage switch is connected to at least one of the memory cells and is adapted to switch in a high voltage.
Abstract:
The present invention relates to a programmable memory device and a method of setting a state for a programmable memory device. In at least one embodiment, the memory device comprises at least a level shifter adapted to stand off a high programing voltage to at least one fuse element in the memory device, wherein the high programming voltage is used to set a state of the memory device.
Abstract:
The present invention relates to a one-time programmable memory cell and a method of setting a state for a one-time programmable memory cell. The memory cell includes a storage element adapted to store data and two thin gated fuses coupled to the storage element, adapted to set the state of the memory cell. A level shifter device is connected to the gated fuses and is adapted to stand off a high voltage when setting the state of the memory cell. At least one switch transistor is connected to at least the level shifter device and is adapted to select at least one of the gated fuses, enabling a high voltage to be communicated thereto, thus setting the state of the memory cell. A programming device is coupled to the storage element and is adapted to keep at least one of the gated fuses low when setting the state of the memory cell.
Abstract:
The present invention relates to a programmable memory cell and a method of setting a state for a programmable memory cell. The memory cell includes two thin gated fuses adapted to set the state of the memory cell. A level shifter device is connected to the gated fuses and is adapted to stand off a high voltage when setting the state of the memory cell. At least one switch transistor is connected to at least the level shifter device and is adapted to select at least one of the gated fuses, enabling a high voltage to be communicated thereto, thus setting the state of the memory cell.
Abstract:
The present invention relates to a method of setting a state of a one-time programmable memory device having at least one memory cell with a thin gate-ox fuse element having an oxide of about 2.5 nm thick or less using a high voltage switch. The method comprises switching in a high programming voltage into the memory cell using such high voltage switch, setting the state of the thin gate-ox fuse element.
Abstract:
An anti-fuse device includes a substrate and laterally spaced source and drain regions formed in the substrate. A channel is formed between the source and drain regions. A gate and gate oxide are formed on the channel and lightly doped source and drain extension regions are formed in the channel. The lightly doped source and drain regions extend across the channel from the source and the drain regions, respectively, occupying a substantial portion of the channel. Programming of the anti-fuse is performed by application of power to the gate and at least one of the source region and the drain region to break-down the gate oxide, which minimizes resistance between the gate and the channel.
Abstract:
The present invention relates to a multi-port register file memory or SRAM including a plurality of storage elements and other circuitry that operate synchronously or asynchronously. The storage elements are arranged in rows and columns and store data. Two read port pairs are coupled to each of the storage elements and a differential sensing device or circuit. The read port is coupled to the storage elements in an isolated manner, enabling a plurality of cells to be arranged in such rows and columns. The sensing device is adapted to sense a small voltage swing. A column mux circuit is coupled to each column and the sensing device. Performance is not degraded unusually as the power supply voltage is reduced due to bus drop or inductive effects.