摘要:
Medical devices and methods are used to treat cardiac dysfunction conditions which involve delivery of stimulation pulses in cardiac refractory periods in order to modulate an effective refractory period (ERP). Such devices and methods may be used in conjunction with or in place of other therapies, including increased cardiac contractility (ICC) therapy, post extrasystolic potentiation (PESP) therapy, and other therapies to achieve increased heart contractility, provide a safer and more effective regimen for the corresponding stimulation therapies, and reduce the risk of inducing an arrhythmia.
摘要:
A closed loop system for monitoring drug dose, intake and effectiveness includes a pill dispenser in data communications with at least one implantable medical device. The system is preferably implemented in a web-enabled environment in which a remote data center communicates with the implantable devices (IMDs) in a patient via a programmer or the pill dispenser. Th data center includes high speed computers and databases relating to patient history and device information. A physician or clinician may access the remote data center to review and monitor the IMDs remotely. More specifically, the IMDs are adapted to chronically monitor the pill dispenser to thereby log and document drug dose, patient compliance with prescriptive regimens and as well to monitor drug efficacy in the patient. The system further provides a dynamic drug management system, compatible with a web-enabled interactive data communication environment, that accurately monitors dose and specific drug effectiveness in a patient to enhance patient care.
摘要:
Bi-Ventricular or AV synchronous cardiac pacing systems that pace and sense in at least one atrial heart chamber and deliver ventricular pacing pulses to right ventricular (RV) and left ventricular (LV) sites separated by a V—V delay for treatment of heart failure are disclosed that optimize one or more of the AV delay and V—V delay to enhance left ventricular filling and cardiac output as a function of QRS duration. A system and method for monitoring the QRS duration, processing such signals to provide data from which the onset or progression of heart failure is determined, and adjusting synchronous pacing delay parameters including SAV delay and/or PAV delay and/or V—V delay to enhance cardiac output as a function of QRS duration is provided. The SAV, PAV, and/or the V—V delays can be varied from the prevailing delays as a function of measured QRS duration so as to minimize the width of the QRS complex.
摘要:
An impedance monitor for discerning edema through evaluation of respiratory rate. Preferred embodiment includes edema monitor and trigger to initiate diagnostic reporting or corrective action when activated. Recording of Long Term Average and Short Term Average values for secondary edema measure based on DC signal level are described as are methods and apparatus for removing unwanted recurring noise.
摘要:
A medical device system including a physiological sensor and ultrafiltration unit senses a physiological signal in a patient and computes a fluid status measurement of the patient using the physiological signal. Ultrafiltration therapy is delivered to the patient according to a therapy delivery control parameter established in response to the fluid status measurement.
摘要:
According to the present invention, discrete measurements of fluid pressure development (and derivatives thereof) are used in optimizing hemodynamics for cardiac resynchronization therapy (CRT) delivery and multiple chamber cardiac pacing, and in enhancing hemodynamics in the event of a sub-optimal left-side lead placement. For example, such diverse pressure measurements include: maximum positive or negative dP/dt values, ePAD, RV systolic, RV diastolic, pulse pressure, and the like. According to the present invention, on a periodic basis or upon demand one or more cardiac pacing intervals are iteratively cycled through a predetermined range and the resulting pressure measurements stored for comparison. The cardiac pacing intervals are then adjusted based at least in part upon the most appropriate, or desirable, measured hemodynamics of the patient. The present invention may be implemented as computer readable instructions executed by a microprocessor-based implantable medical device.
摘要:
There is provided a dual chamber pacemaker system and method for ventricular pacing to provide therapy for a patient with cardiomyopathy, this system being characterized by automatically adjusting the AV escape interval so that ventricular pace pulses are delivered at an AV delay which is optimized for HOCM and/or dialated cardiomyopathy therapy. The pacemaker system continually obtains and stores representations of a QRS wave characteristic such as duration, derived either directly from the QRS signal or from an FFRS signal, and compares duration data from one or more cycles to prior stored duration data. The system then adjusts the AV interval as a function of the duration comparison, and the direction of the last adjustment of AV escape interval. By this means, the AV escape interval is maintained at or just short of the onset of fusion, thereby automatically providing for optimally lengthened AV escape intervals consistent with full capture by the delivered ventricular pace pulse.
摘要:
A cardiac ischemic protection system and method for conditioning a patient's heart is provided. The method can include detecting acute myocardial infarction, angina pectoris, silent ischemia, or stunning and providing closed-loop dyssynchronous pacing to the patient's heart to precondition and/or postcondition the patient's heart in order to reduce ischemic damage.
摘要:
A medical device system including a physiological sensor and ultrafiltration unit senses a physiological signal in a patient and computes a fluid status measurement of the patient using the physiological signal. Ultrafiltration therapy is delivered to the patient according to a therapy delivery control parameter established in response to the fluid status measurement.
摘要:
A closed loop system for monitoring drug dose, intake and effectiveness includes a pill dispenser in data communications with at least one implantable medical device. The system is preferably implemented in a web-enabled environment in which a remote data center communicates with the implantable devices (IMDs) in a patient via a programmer or the pill dispenser. Th data center includes high speed computers and databases relating to patient history and device information. A physician or clinician may access the remote data center to review and monitor the IMDs remotely. More specifically, the IMDs are adapted to chronically monitor the pill dispenser to thereby log and document drug dose, patient compliance with prescriptive regimens and as well to monitor drug efficacy in the patient. The system further provides a dynamic drug management system, compatible with a web-enabled interactive data communication environment, that accurately monitors dose and specific drug effectiveness in a patient to enhance patient care.