摘要:
A circuit for detecting antigens on biosample tracks comprising a processor, an electromagnetic write head for magnetizing nanoparticles attached to the antigens via antibodies in response to a write signal from the processor, and a first amplifier for supplying power to the write head. The circuit further comprises a magneto-resistive read sensor for detecting the magnetized nanoparticles upon receiving a read signal from the processor, and a second amplifier for supplying power to the read sensor. The write head and read sensor may be part of a head module in a magnetic tape drive. Nanoparticles of differing magnetic properties may be selectively paired with antibodies associated with different antigens to allow different antigens to be detected upon a single scan by the read-sensor.
摘要:
A circuit for detecting antigens on biosample tracks comprising a processor, an electromagnetic write head for magnetizing nanoparticles attached to the antigens via antibodies in response to a write signal from the processor, and a first amplifier for supplying power to the write head. The circuit further comprises a magneto-resistive read sensor for detecting the magnetized nanoparticles upon receiving a read signal from the processor, and a second amplifier for supplying power to the read sensor. The write head and read sensor may be part of a head module in a magnetic tape drive. Nanoparticles of differing magnetic properties may be selectively paired with antibodies associated with different antigens to allow different antigens to be detected upon a single scan by the read-sensor.
摘要:
A first set of antibodies are bonded to a substrate, and are exposed to and bonded with target antigens. A second set of antibodies are bonded to nanoparticles, and the nanoparticle labeled antibodies are exposed to the targeted antigens. An electromagnetic write-head magnetizes the nanoparticles, and then a read-sensor detects the freshly magnetized nanoparticles. The substrate comprises a flexible film or a Peltier material to allow selective heating and cooling of the antigens and antibodies. Nanoparticles of different magnetic properties may be selectively paired with antibodies associated with different antigens to allow different antigens to be detected upon a single scan by the read-sensor.
摘要:
A first set of antibodies are bonded to a substrate, and are exposed to and bonded with target antigens. A second set of antibodies are bonded to nanoparticles, and the nanoparticle labeled antibodies are exposed to the targeted antigens. An electromagnetic write-head magnetizes the nanoparticles, and then a read-sensor detects the freshly magnetized nanoparticles. The substrate comprises a flexible film or a Peltier material to allow selective heating and cooling of the antigens and antibodies. Nanoparticles of different magnetic properties may be selectively paired with antibodies associated with different antigens to allow different antigens to be detected upon a single scan by the read-sensor.
摘要:
Embodiments of the invention relate to magnetizing and detecting nanoparticle-labeled antigens on biosample tracks deposited on a tape media. An aspect of the invention comprises apparatus and methods for labeling antigens with demagnetized nanoparticles, magnetizing the nanoparticles with an electromagnetic write head, and detecting the antigens via the magnetized nanoparticles by reading the tape media with a read sensor in a read-after-write operation. The write head and read sensor are part of a head-module of magnetic tape drive. Target antigens are attached to the biosample tracks by antibodies. Nanoparticles of differing magnetic properties may be selectively paired with antibodies associated with different antigens to allow multiple antigens to be detected upon a single scan by the read sensor.
摘要:
A circuit for controlling an electromagnetic head module to detect antigens on a biosample track comprising a processor for receiving position-error-servo signal from the PES read sensor, a write head for magnetizing nanoparticles attached to antigens, and a read sensor for detecting the nanoparticle-labeled antigens. The circuit may further comprise an X-axis actuator for controlling the head module in the direction perpendicular to the track and an Y-axis actuator coupled to the head module and the X-axis actuator for controlling the head module in the direction of the track. Target antigens are attached to the biosample track and nanoparticles via antibodies.
摘要:
A circuit for controlling an electromagnetic head module to detect antigens on a biosample track comprising a processor for receiving position-error-servo signal from the PES read sensor, a write head for magnetizing nanoparticles attached to antigens, and a read sensor for detecting the nanoparticle-labeled antigens. The circuit may further comprise an X-axis actuator for controlling the head module in the direction perpendicular to the track and an Y-axis actuator coupled to the head module and the X-axis actuator for controlling the head module in the direction of the track. Target antigens are attached to the biosample track and nanoparticles via antibodies.
摘要:
Described are embodiments to ensure that the equipment utilized to detect antigens is reliable and accurate. If it is determined that a read sensor is degraded a method of calibrating a read sensor of a read head is described. In one embodiment, a method of calibrating a magnetic read sensor includes measuring a first resistance of the magnetic read sensor upon an application of a forward bias current to the magnetic read sensor and measuring a second resistance of the magnetic read sensor upon an application of a reverse bias current to the magnetic read sensor. A calibration constant is determined based on at least the first measured resistance and the second measured resistance. In one embodiment the method further includes storing the determined calibration constant for the magnetic read sensor in memory. Further, in one embodiment the head module having the magnetic read sensor is swept over at least one nanoparticle to obtain a read response of the magnetic read sensor to the nanoparticle. The read response from the magnetic read sensor of the at least one nanoparticle is adjusted based on the determined calibration constant. Calibration of each individual read sensor allows for uniform read responses from each of the read sensors on a read head, and prevents unreliable an inaccurate detection of analytes due to sensor degradation.
摘要:
Described are embodiments to ensure that the equipment utilized to detect antigens is reliable and accurate. Accordingly, one embodiment of the invention includes a calibration assembly having nanoparticles, with known magnetic properties, spaced apart at known y-axis locations along the calibration assembly. In one embodiment, the calibration assembly may be used to calibrate a matched filter of the write and read circuitry. Because the calibration assembly comprises nanoparticles with known magnetic properties the read response of the read circuitry to a particular nanoparticle may be stored in the matched filter as an ideal signal for that nanoparticle. The ideal signal stored in the matched filter may then be utilized for reliably and accurately detecting antigens. Still further, the ideal signal stored within the matched filter of the write and read circuitry may be utilized in a correlation test of a calibration assembly to ensure that the calibration assembly is within a manufacturer's or user's acceptable standards for calibration of their write and read assemblies.
摘要:
Described are embodiments to ensure that the equipment utilized to detect antigens is reliable and accurate. Accordingly, one embodiment of the invention includes a calibration assembly having nanoparticles, with known magnetic properties, spaced apart at known y-axis locations along the calibration assembly. In one embodiment, the calibration assembly may be used to calibrate a matched filter of the write and read circuitry. Because the calibration assembly comprises nanoparticles with known magnetic properties the read response of the read circuitry to a particular nanoparticle may be stored in the matched filter as an ideal signal for that nanoparticle. The ideal signal stored in the matched filter may then be utilized for reliably and accurately detecting antigens. Still further, the ideal signal stored within the matched filter of the write and read circuitry may be utilized in a correlation test of a calibration assembly to ensure that the calibration assembly is within a manufacturer's or user's acceptable standards for calibration of their write and read assemblies.