Abstract:
A power system is for a facility. The power system includes a load panel powered from a split phase electrical distribution configuration having a first line, a second line and a neutral. A two-pole circuit interrupter in the load panel receives power from the first line, the second line and the neutral, and protects an unbalanced load. The two-pole circuit interrupter is structured to trip open or open responsive to an input. A circuit in the load panel is structured to determine that the neutral is broken or missing and responsively output to the input to cause the two-pole circuit interrupter to trip open or open.
Abstract:
A circuit for indicating a broken or missing neutral in a split phase electrical distribution configuration having an unbalanced load includes: a voltage divider configured to divide the voltage difference between a first line and a second line and to output the divided voltage difference as a virtual neutral; a rectifier including an input of the virtual neutral, the neutral, and an output, the rectifier configured to rectify a voltage difference between the virtual neutral and the neutral; a determination circuit including an input of the rectified voltage difference, a reference voltage and an output, the determination circuit configured to determine if the neutral is missing or broken based on the rectified voltage difference and the reference voltage; and an indicator circuit configured to indicate when the neutral is missing or broken based on the output of the determination circuit.
Abstract:
A surge protection apparatus includes a first surge protection device (10) having a number of first transient suppressing elements, a second surge protection device having a number of second transient suppressing elements, and a circuit coupled to the surge protection devices. The circuit has a number of display elements, wherein the circuit is structured to receive input signals from the first and second surge protection devices and (i) responsive to any one of the first transient suppressing elements failing, causes the number of display elements to provide a first indication indicating that at least one of the first transient suppressing elements has failed, and (ii) responsive to any one of the second transient suppressing elements failing, cause the number of display elements to provide a second indication indicating that at least one of the second transient suppressing elements has failed.
Abstract:
Electrical distribution panels are provided that are configured to receive a smart breaker. The electrical distribution panel includes a frame; at least one bus line coupled to the frame; a position sensing circuit associated with a breaker position of the electrical distribution panel, the position sensing circuit being configured to provide a unique electrical parameter associated with the breaker position; and a communications circuit coupled to the position sensing circuit and configured to communicate information pertaining to the unique electrical parameter to an external recipient when the smart breaker is positioned in the electrical distribution panel to provide an address for a device associated with the breaker position.
Abstract:
Self-test circuitry for testing a circuit interrupter includes an active element coupled to an operating mechanism, a first sub-circuit for temporarily disabling the active element, a second sub-circuit structured to generate a simulated ground fault condition, and a processing unit coupled to the ground fault detection circuitry. The first sub-circuit and the second sub-circuit, the processing unit being structured and configured to control the first sub-circuit to temporarily disable the active element and to control the second sub-circuit to generate the simulated ground fault condition when the active element is disabled. Also, self-test circuitry that includes a sub-circuit structured to generate a simulated ground fault condition and a processing unit structured and configured to control the sub-circuit to generate the simulated ground fault condition only during a predetermined portion of a half cycle of energy passing through the circuit interrupter.
Abstract:
A surge protection apparatus includes a first surge protection device (10) having a number of first transient suppressing elements, a second surge protection device having a number of second transient suppressing elements, and a circuit coupled to the surge protection devices. The circuit has a number of display elements, wherein the circuit is structured to receive input signals from the first and second surge protection devices and (i) responsive to any one of the first transient suppressing elements failing, causes the number of display elements to provide a first indication indicating that at least one of the first transient suppressing elements has failed, and (ii) responsive to any one of the second transient suppressing elements failing, cause the number of display elements to provide a second indication indicating that at least one of the second transient suppressing elements has failed.