Abstract:
Disclosed are oleyl propylenediamine-based compounds used in compositions and methods for inhibiting corrosion. The method comprises introducing into a fluid source a composition comprising one or more oleyl propylenediamine-based compounds comprising Formula I: wherein Y1, Y2, and Y3 independently are hydrogen or a substituent of Formula (II): wherein V is —O— or —NH—, W is optionally present and is a linear or branched C1-10 aliphatic group, X is —H, —NZ3+, —COOH, —SO3H, —OSO3H2, —PO3H, —OPO3H2, or a salt thereof, each Z independently is hydrogen or a linear or branched C1-20 aliphatic group optionally interrupted or substituted with one or more oxygen atoms, and R is hydrogen or methyl, provided that at least one of Y1, Y2, or Y3 is a substituent of Formula (II).
Abstract:
A method of obtaining or maintaining optical transference into deaerated liquid in contact with a light transference medium is disclosed. The method comprises applying ultrasonic energy at a wavelength (λ) into deaerated liquid in contact with a light transference medium. The ultrasonic energy at wavelength (λ) originates at a distance (d) from an optical signal transmitted into the light transference medium. The distance (d) may be defined by a formula based on the wavelength (λ) of the ultrasonic energy.
Abstract:
Disclosed are oleyl propylenediamine-based compounds used in compositions and methods for inhibiting corrosion. The method comprises introducing into a fluid source a composition comprising one or more oleyl propylenediamine-based compounds comprising Formula I:
wherein Y1, Y2, and Y3 independently are hydrogen or a substituent of Formula (II):
wherein V is —O— or —NH—, W is optionally present and is a linear or branched C1-10 aliphatic group, X is —H, —NZ3+, —COOH, —SO3H, —OSO3H2, —PO3H, —OPO3H2, or a salt thereof, each Z independently is hydrogen or a linear or branched C1-20 aliphatic group optionally interrupted or substituted with one or more oxygen atoms, and R is hydrogen or methyl, provided that at least one of Y1, Y2, or Y3 is a substituent of Formula (II).
Abstract:
A package comprising a body comprising a first compartment containing a first substance and a second compartment containing a second substance. The package includes a first state in which the first compartment is isolated from the second compartment such that the first substance is separated from the second substance, and a second state in which the first compartment communicates with the second compartment such that the first substance and the second substance combine.
Abstract:
A package comprising a body comprising a first compartment containing a first substance and a second compartment containing a second substance. The package includes a first state in which the first compartment is isolated from the second compartment such that the first substance is separated from the second substance, and a second state in which the first compartment communicates with the second compartment such that the first substance and the second substance combine.
Abstract:
A clean-in-place method of maintaining optical transference through a light transference medium operably connected to a boiler system is disclosed. The method comprises inter alia contacting a liquid chemical agent to a wetted surface of a light transference medium. The liquid chemical agent is selected from the group consisting of an acid, a chelant, a reducing agent, and combinations thereof, for a period of time and at a concentration sufficient to clean the wetted surface of the light transference medium.
Abstract:
Disclosed are oleyl propylenediamine-based compounds used in compositions and methods for inhibiting corrosion. The method comprises introducing into a fluid source a composition comprising one or more oleyl propylenediamine-based compounds comprising Formula I:
wherein Y1, Y2, and Y3 independently are hydrogen or a substituent of Formula (II):
wherein V is —O— or —NH—, W is optionally present and is a linear or branched C1-10 aliphatic group, X is —H, —NZ3+, —COOH, —SO3H, —OSO3H2, —PO3H, —OPO3H2, or a salt thereof, each Z independently is hydrogen or a linear or branched C1-20 aliphatic group optionally interrupted or substituted with one or more oxygen atoms, and R is hydrogen or methyl, provided that at least one of Y1, Y2, or Y3 is a substituent of Formula (II).
Abstract:
Disclosed are oleyl propylenediamine-based compounds used in compositions and methods for inhibiting corrosion. The method comprises introducing into a fluid source a composition comprising one or more oleyl propylenediamine-based compounds comprising Formula I: wherein Y1, Y2, and Y3 independently are hydrogen or a substituent of Formula (II): wherein V is —O— or —NH—, W is optionally present and is a linear or branched C1-10 aliphatic group, X is —H, —NZ3+, —COOH, —SO3H, —OSO3H2, —PO3H, —OPO3H2, or a salt thereof, each Z independently is hydrogen or a linear or branched C1-20 aliphatic group optionally interrupted or substituted with one or more oxygen atoms, and R is hydrogen or methyl, provided that at least one of Y1, Y2, or Y3 is a substituent of Formula (II).
Abstract:
A method of obtaining or maintaining optical transference into deaerated liquid in contact with a light transference medium is disclosed. The method comprises applying ultrasonic energy at a wavelength (λ) into deaerated liquid in contact with a light transference medium. The ultrasonic energy at wavelength (λ) originates at a distance (d) from an optical signal transmitted into the light transference medium. The distance (d) may be defined by a formula based on the wavelength (λ) of the ultrasonic energy.
Abstract:
Disclosed are oleyl propylenediamine-based compounds used in compositions and methods for inhibiting corrosion. The method comprises introducing into a fluid source a composition comprising one or more oleyl propylenediamine-based compounds comprising Formula I: wherein Y1, Y2, and Y3 independently are hydrogen or a substituent of Formula (II): wherein V is —O— or —NH—, W is optionally present and is a linear or branched C1-10 aliphatic group, X is —H, —NZ3+, —COOH, —SO3H, —OSO3H2, —PO3H, —OPO3H2, or a salt thereof, each Z independently is hydrogen or a linear or branched C1-20 aliphatic group optionally interrupted or substituted with one or more oxygen atoms, and R is hydrogen or methyl, provided that at least one of Y1, Y2, or Y3 is a substituent of Formula (II).