Abstract:
A method of improving the performance of an optical time domain reflectometer (OTDR) is provided. The method according to an embodiment of the present invention can increase accuracy of a distance of the OTDR through an initial calibration method with respect to the refractive index of an optical fiber, and can accurately detect a fault position and accurately analyze a fault cause through a real-time calibration method with respect to the refractive index of the optical fiber when faults and performance degradation occur.
Abstract:
A wavelength-tunable optical transmission apparatus including an optical array unit comprising a plurality of light sources whose wavelengths are changed, an optical driving unit configured to receive an electrical signal transmitted from an external circuit, generate the current and input the generated current to the optical array unit, and a control unit configured to control the magnitude of current input to the optical array unit by controlling the optical driving unit.
Abstract:
A multi-channel transmitter optical sub-assembly (TOSA) is provided. The multi-channel TOSA includes a stem including a sub-mount, a plurality of light sources mounted on the sub-mount, a common ground pad disposed at the sub-mount and connected to ground electrodes of the light sources in common, a common lead pin installed at the stem, and connected to the common ground pad, and a thermistor mounted on the sub-mount along with the light sources.
Abstract:
There is provided an optical transceiver apparatus including an optical transmitter configured to transmit light of variable wavelength, an optical receiver configured to receive light generated from an opposite light source, and a controller configured to perform initialization to a wavelength corresponding to when an intensity of light received by the optical receiver is greater than or equal to a reference power, while varying the wavelength of light output by the optical transmitter.