摘要:
A fluorescent paste that can form a fluorescent film and can be manufactured without a binder resin and has a high recording density and peel resistance Fluorescent fine particles each coated with a film formed of a film compound having a reactive group and a curing agent having a plurality of crosslinking reaction groups each reacting with the reactive group to form bonds are blended with a solvent to manufacture fluorescent paste. The fluorescent paste is applied to a substrate coated with a film formed of a second film compound having a second reactive group and is cured by crosslinking reactions between the reactive group and the second reactive group, and the crosslinking reaction groups to form a fluorescent film.
摘要:
The present invention relates to a conductive paste in which fine metal particles are dispersed into a chemical adsorption liquid produced from a mixture of at least an alkoxysilane compound, a silanol condensation catalyst, and a nonaqueous organic solvent to form an organic thin film comprising molecules covalently bound to the surface of the fine metal particle by having the surface of the fine metal particle react with the alkoxysilane compound, so that fine metal particles that are given a reactive function to the surface are produced while almost maintaining the original conductivity of the fine metal particles, and further the particles are pasted with an organic solvent.
摘要:
The mold has a mold surface on which is formed as a release film a water-repellent and oil-repellent fluorocarbon-based chemisorbed film having a thickness that is uniform in nanoscale and having a controlled surface energy. As a result, even when a mold has an ultrafine shape on the nanometer scale, the mold allows high precision molding excellent in fluidity and penetrativity of a molding material. In addition, this mold eliminates the application of a release agent and can prevent a release agent from adhering to a molded article.
摘要:
A patterned fine particle film structure includes a fine particle layer including fine particles arranged and bound to a surface of a substrate coated with a patterned film including a first film compound having a first functional group. The fine particles are coated with films including a first coupling agent having a first coupling reactive group that undergoes a coupling reaction with the first functional group to form a bond. The fine particle layer is bound by a bond formed through a coupling reaction. In an embodiment, fine particles coated with films of a film compound that reacts with the first coupling reactive group and the fine particles are alternately bound to the substrate.