Abstract:
The invention relates to a method for the preparation of a coating comprising at least one coating layer on a solid substrate, said method comprising the steps of a, providing monomers of the type R—(N)x-(L)m-(C≡C)n-(L′]o(N′)y—R′, wherein R is a head moiety, R′ is a tail moiety, (C≡C)n is an oligoyne moiety, L and L′ are linker moieties, N and N′ independently are branched or unbranched optionally substituted C1-C25 alkyl moieties optionally containing 1 to 5 heteroatoms, x, m, o, and y are independently 0 or 1, n is 4 to 12, and wherein said head moiety allows for an interaction with the surface of said solid substrate; b. bringing said monomers into contact with said solid substrate wherein said interaction of said head moieties of said monomers with the surface of said solid substrate induces at least a part of said monomers to align in a defined manner thereby forming a film on said surface and bringing said oligoyne moieties of said monomers into close contact with each other; c. inducing a reaction between oligoyne moieties by providing an external stimulus so as to at least partially cross-link said aligned monomers, thereby forming a coating layer on said solid substrate. The invention further relates to a coating obtainable according to the method of the invention, the use of a coating obtainable according to the method of the invention, a solid substrate comprising a coating obtainable according to the invention and the use of the solid substrate.
Abstract:
Disclosed herein is a pattern forming method comprising providing a substrate devoid of a layer of a brush polymer; disposing upon the substrate a composition comprising a block copolymer comprising a first polymer and a second polymer; where the first polymer and the second polymer of the block copolymer are different from each other; and an additive polymer where the additive polymer comprises a bottlebrush polymer; where the bottlebrush polymer comprises a polymeric chain backbone and a grafted polymer that are bonded to each other; and where the bottlebrush polymer comprises a polymer that is chemically and structurally the same as one of the polymers in the block copolymer or where the bottlebrush polymer comprises a polymer that has a preferential interaction with one of the blocks of the block copolymers; and a solvent; and annealing the composition to facilitate domain separation between the first polymer and the second polymer.
Abstract:
High-chi diblock copolymers are disclosed whose self-assembly properties are suitable for forming hole and bar openings for conductive interconnects in a multi-layered structure. The hole and bar openings have reduced critical dimension, improved uniformity, and improved placement error compared to the industry standard poly(styrene)-b-poly(methyl methacrylate) block copolymer (PS-b-PMMA). The BCPs comprise a poly(styrene) block, which can optionally include repeat units derived from trimethylsilyl styrene, and a second block that can be a polycarbonate block or a polyester block. Block copolymers comprising a fluorinated linking group L′ comprising 1-25 fluorines between the blocks can provide further improvement in uniformity of the openings.
Abstract:
Block copolymers comprise a first block comprising an alternating copolymer, and a second block comprising a unit comprising a hydrogen acceptor. The block copolymers find particular use in pattern shrink compositions and methods in semiconductor device manufacture for the provision of high resolution patterns.
Abstract:
According to one embodiment, a pattern forming method includes forming a resist pattern on an under-layer, forming a recessed portion in the under-layer by etching the under-layer using the resist pattern as a mask, slimming the resist pattern, forming a neutral layer having an affinity for first and second polymers on a region of the under-layer not covered with the slimmed resist pattern, forming a block copolymer film containing the first polymer and the second polymer on the slimmed resist pattern and the neutral layer, and forming a microphase separation pattern comprising a first portion formed of the first polymer and a second portion formed of the second polymer by applying microphase separation processing to the block copolymer film.
Abstract:
Provided herein are methods of directed self-assembly (DSA) on atomic layer chemical patterns and related compositions. The atomic layer chemical patterns may be formed from two-dimensional materials such as graphene. The atomic layer chemical patterns provide high resolution, low defect directed self-assembly. For example, DSA on a graphene pattern can be used achieve ten times the resolution of DSA that is achievable on a three-dimensional pattern such as a polymer brush. Assembly of block copolymers on the atomic layer chemical patterns may also facilitate subsequent etch, as the atomic layer chemical patterns are easier to etch than conventional pattern materials.
Abstract:
Methods of forming patterns includes guide patterns on a neutral layer. A self-assembling block copolymer (BCP) layer on the guide patterns and the neutral layer. By annealing the self-assembling BCP layer, first polymer block domains and second polymer block domains are formed The guide patterns are formed of a developable antireflective material. The neutral layer is formed of a cross-linked polymeric material.
Abstract:
According to one embodiment, a pattern formation method includes forming a resist pattern on an underlying film, slimming the resist pattern, forming a pinning portion having affinity for a first polymer by depositing, on a surface of the slimmed resist pattern, an etching product produced by etching the underlying film, forming a neutral, film having affinity for the first polymer and a second polymer on the underlying film after the etching, forming a block copolymer film containing the first polymer and the second polymer on the pinning portion and the neutral film, forming a microphase separation pattern by applying a predetermined process to the block copolymer film to perform microphase separation.
Abstract:
Techniques disclosed herein include methods for creating a directed self-assembly tunable neutral layer that works with multiple different block copolymer materials. Techniques herein can include depositing a neutral layer and then post-processing this neutral layer to tune its characteristics so that the neutral layer is compatible with a particular block copolymer scheme or schemes. Post-processing herein of such a neutral layer can modify a ratio of pi and sigma bonds in a given carbon film or other film to approximate a given self-assembly film that will be deposited on this neutral layer. Accordingly, a generic or single material can be used for a neutral layer and modified to match a given block copolymer to be deposited.
Abstract:
A method of forming a fine pattern includes forming pillar-shaped guides regularly arranged on a feature layer, forming a block copolymer layer on the feature layer around the pillar-shaped guides, phase separating the block copolymer layer, forming first domains regularly arranged on the feature layer with the pillar-shaped guides, forming a second domain on the feature layer surrounding the pillar-shaped guides and the first domains, removing the first domains, and forming holes corresponding with the first domains in the feature layer by etching the feature layer using the pillar-shaped guides and the second domain as etch masks. The block copolymer layer includes a polymer blend having first and second polymer blocks having first and second repeat units, respectively, a first homopolymer and a second homopolymer. The first domains include the first polymer block and the first homopolymer, and the second domain includes the second polymer block and the second homopolymer.