Abstract:
Techniques described herein are generally related to graphene membranes having gas-permeable substrates. Various example substrates may include a gas-permeable substrate with a convoluted surface and a graphene layer on the gas-permeable substrate. The membranes may also include nanopores formed on the graphene layer. The membranes may exhibit improved permeability properties. Methods and systems configured to make and use the membranes are also disclosed.
Abstract:
Techniques described herein generally relate to etching graphene. The techniques can include disposing graphene on a patterned substrate, applying a resist to the graphene on the patterned substrate, curing the resist, and etching exposed portions of the graphene. Graphene composites including patterned substrates, graphene disposed on the patterned substrate, and a resist disposed on the graphene, are disclosed. Systems configured to perform the methods and/or make the graphene composites are also disclosed.
Abstract:
Systems and articles of manufacture for minimizing corrosion in supercritical water gasification components are disclosed, as well as methods for their preparation and operation. The systems may include a nonconducting conduit that is configured to receive a fluid at a first end and transmit the fluid toward a second end thereof. The fluid may include a plurality of ions. The nonconducting conduit may include an inside surface and an outside surface. The systems may further include a plurality of electrodes distributed about at least a portion of the outside surface of the nonconducting conduit and a power source electrically connected to the plurality of electrodes. The power source may be configured to apply an alternating current across the plurality of electrodes, and the alternating current may be effective to exert an electrophoretic force on the plurality of ions in the fluid.