Abstract:
A lens array fabrication method for fabricating a lens array includes: receiving pins (16) of a film attaching instrument (jig) in second guide holes (10) of a film-containing base plate; bonding a placement area and an adhesion layer (F); removing the pins (16); causing a detachment between a first detachment film (C) and a pressure-sensitive adhesive optical film (D); separating three layers (D) to (F) from two layers (B) and (C); receiving the pins (16) in first guide holes (7) of a lens array main unit; fitting a film holding protrusion (15) in a depression part (6); bonding the film (D) to a bonding region (i); removing the pins (16); and causing a detachment between the film (D) and a second detachment film (E).
Abstract:
An optical receptacle includes a light dividing surface that divides light from a light-emitting element into monitor light and coupling light to be coupled with an optical transmission body using total reflection. The light dividing surface includes a first curved surface that protrudes to the side opposite to a first surface from a first virtual reference surface having a slope angle of angle α[°] in relation to the first surface on a photoelectric conversion device side of an optical receptacle main body and a second curved surface that is connected to the first curved surface and protrudes to the side opposite to the first surface from a second virtual reference surface having a slope angle of angle β[°] in relation to the first surface, in which α and β satisfy α>β>critical angle.
Abstract:
A surface (17d′) facing a photoelectric conversion apparatus is formed on the optical block (3) side, said surface having light from a light emitting element (10) inputted thereto and monitor light outputted therefrom, and a coupling light output surface (12) having coupling light outputted therefrom is formed on the optical housing (4) side, and consequently, the surface (17d′) and the coupling light output surface (12) are simply and highly accurately formed. Then, an optical block (3) and an optical housing (4) are simply and accurately combined by being fitted together by means of fitting sections (21, 24). Adhesion of foreign materials and formation of scratches on the reflecting surface (18) of the optical block (3) are suppressed by covering the reflecting surface (18) with the optical housing (4).
Abstract:
An optical receptacle has a first optical surface which receives incidence of light from a light emitting element, a reflecting surface which reflects the light along a substrate, a light separating section which separates light reflected at the reflecting surface into monitor light and signal light, a second optical surface which emits the monitor light toward a light receiving element, and a third optical surface which emits the signal light toward an optical fiber. The light separating section has a plurality of splitting transmissive surfaces which are vertical surfaces with respect to the optical axis of the light reflected at the reflecting surface and a plurality of splitting reflecting surfaces which are inclining surfaces with respect to the optical axis of the light reflected at the reflecting surface. The splitting transmissive surfaces and the splitting reflecting surfaces are alternately disposed in a first direction and in a second direction.
Abstract:
An optical receptacle includes a first optical surface which receives incidence of light, a reflecting surface which reflects light along a substrate, a light separating section which separates light from the reflecting surface into monitor light and signal light, a second optical surface which emits the monitor light toward a light receiving element, and a third optical surface which emits the signal light. The light separating section includes a plurality of separating units each including a vertical splitting transmissive surface, an inclining splitting reflecting surface and a parallel splitting stepped surface. In the light separating section, 4 to 6 separating units are disposed within a region where light reflected at the reflecting surface is incident. A height of a boundary between the splitting transmissive surface and the splitting stepped surface with respect to a virtual plane including the splitting reflecting surface is 13 to 21 μm.
Abstract:
An optical receptacle includes a light dividing surface that divides light from a light-emitting element into monitor light and coupling light to be coupled with an optical transmission body using total reflection. The light dividing surface includes a first curved surface that protrudes to the side opposite to a first surface from a first virtual reference surface having a slope angle of angle α[°] in relation to the first surface on a photoelectric conversion device side of an optical receptacle main body and a second curved surface that is connected to the first curved surface and protrudes to the side opposite to the first surface from a second virtual reference surface having a slope angle of angle β[°] in relation to the first surface, in which α and β satisfy α>β>critical angle.
Abstract:
A lens array fabrication method for fabricating a lens array includes: receiving pins (16) of a film attaching instrument (jig) in second guide holes (10) of a film-containing base plate; bonding a placement area and an adhesion layer (F); removing the pins (16); causing a detachment between a first detachment film (C) and a pressure-sensitive adhesive optical film (D); separating three layers (D) to (F) from two layers (B) and (C); receiving the pins (16) in first guide holes (7) of a lens array main unit; fitting a film holding protrusion (15) in a depression part (6); bonding the film (D) to a bonding region (i); removing the pins (16); and causing a detachment between the film (D) and a second detachment film (E).
Abstract:
An optical receptacle disposed between a photoelectric conversion device and an optical fiber includes a light separating section for separating incident light into monitor light and fiber coupled light, which section includes a segmented reflective surface and a segmented transmitting surface. The reflective surface for reflecting light as monitor light is disposed in a segmented manner with spaces in a segmentation direction. The transmitting surface is disposed in a segmented manner in areas where the reflective surface is not disposed, so as to transmit a portion of light other than the reflected light in a direction directly oppose to the direction of the reflected light and to advance the other portion of light towards the side of an end face of the optical fiber.
Abstract:
A lens array fabrication method for fabricating a lens array includes: receiving pins of a film attaching instrument (jig) in second guide holes of a film-containing base plate; bonding a placement area and an adhesion layer (F); removing the pins; causing a detachment between a first detachment film (C) and a pressure-sensitive adhesive optical film (D); separating three layers (D) to (F) from two layers (B) and (C); receiving the pins in first guide holes of a lens array main unit; fitting a film holding protrusion in a depression part; bonding the film (D) to a bonding region (i); removing the pins; and causing a detachment between the film (D) and a second detachment film (E).
Abstract:
A surface (3a′) having light of a light emitting element (10) inputted thereto and monitor light outputted therefrom is formed as a part of an optical plate (3), and an output surface (12) having coupling light outputted therefrom is formed as a part of an optical block (4), thereby simply and highly accurately forming the optical surfaces (3a′, 12). Then, the optical plate (3) and the optical block (4) are simply and highly accurately combined by being fitted together by means of fitting sections (21, 25).