Abstract:
The optical receptacle of the invention includes plural first optical surfaces allowing light emitted from plural light emitting elements to be incident thereon, plural second optical surfaces emitting the light incident on the first optical surfaces toward plural optical transmission members, and a third optical surface reflecting the light incident on the first optical surfaces toward the second optical surfaces. The distances between the center of the first optical surface and the light-emitting surface of the light emitting element and between the center of the second optical surface and the light-emitting surface of the light emitting element is longer toward the center from both ends of the row. The center-to-center distances of the first optical surfaces and of the second optical surfaces are shorter, respectively, than the distance between optical axes of light emitted from the light emitting elements and the center-to-center distance of light-receiving surfaces of optical transmission members.
Abstract:
In an exemplary configuration, a lens array and a light module using the same include a first lens surface 11 and a second lens surface 12 formed into surface shapes such that by expanding the luminous flux diameter of light as the light travels from the first lens surface 11 toward the second lens surface 12, a light spot on the second lens surface 12 is larger in diameter than a light spot on the first lens surface 11, whereby the effects on optical performance by foreign objects and scratches on the lens surface can be mitigated, the criteria for the outward appearance of the lens surface can therefore be mitigated and the yield rate improved, and costs can be reduced.
Abstract:
A lens array is provided with a prism adhered within a prism placement recessing section by an adhesive, wherein retention of air-bubbles in the adhesive on an optical path of light of each light-emitting element between the prism placement recessing section and the prism is prevented by a first air-bubble retention prevention recessing section and a second air-bubble retention prevention recessing section that communicate with the prism placement recessing section in a lens array direction, and flowing of the adhesive onto a total reflection surface is prevented by an adhesive flow prevention recessing edge section.
Abstract:
The optical receptacle according to the present invention has a first optical element and a second optical element. The first optical element and the second optical element are coupled to each other via a first fitting part of the first optical element and a second fitting part of the second optical element. The first optical element has a first optical surface and a second optical surface. The second optical element has a third optical surface, a fourth optical surface and a light-separating part.
Abstract:
The optical receptacle according to the present invention comprises: a first optical surface, a second optical surface, an optical separating part and a third optical surface. The optical separating part includes a first dividing reflection surface for causing a part of the emittance light incident on the first optical surface to be internally reflected toward the second optical surface as the signal light, and a second dividing reflection surface for causing a part of the emittance light incident on the first optical surface to be internally reflected toward the third optical surface as the monitor light. The entire light path between the first optical surface, the optical separating part, and the second optical surface is located inside the optical receptacle.
Abstract:
This optical receptacle has: a first optical surface on which light emitted from a photoelectric conversion element is incident; a second optical surface for emitting the light incident on the first optical surface to an end surface of an optical transmission body; a light separating part for separating the light incident on the first optical surface into signal light oriented toward the end surface of the optical transmission body and monitor light oriented toward a detection element so as to proceed in a direction substantially opposite to the progress direction of the signal light; and a third optical surface for emitting the monitor light separated by the light separating part toward the detection element. The entire optical path between the first optical surface and the second optical surface is positioned inside the optical receptacle.
Abstract:
This optical receptacle has a first optical surface, a reflection surface, a second optical surface, a light separation part, and a third optical surface. On the first optical surface, light from a photoelectric conversion element is incident. The reflection surface reflects the light incident on the first optical surface. The second optical surface allows the light reflected by the reflection surface to be emitted toward an end surface of an optical transmission body. The light separation part separates the light reflected by the reflection surface, into monitor light and signal light. The third optical surface allows the monitor light to be emitted toward a detection element. The light separation part includes divided reflection surfaces and divided transmission surfaces. At least one of the divided transmission surfaces includes one or more widened portions each having a width larger than those of the other divided transmission surfaces.
Abstract:
This optical module comprises a substrate, light-emitting elements, a ferrule, an optical receptacle, through-holes and an adhesive. The optical receptacle includes two support units, and an optical receptacle body that has a first optical surface and a second optical surface. The through-holes include two first through-holes surrounded by the leading ends of the support units and the ferrule, and two second through-holes which are surrounded by the optical receptacle body, the support units and the ferrule. Thus, even using the adhesive to fix the optical receptacle and the ferrule to the substrate, it is possible to optically connect multiple optical transmission bodies with multiple light-emitting elements or multiple light-receiving elements in a suitable manner.
Abstract:
A lens array fabrication method for fabricating a lens array includes: receiving pins (16) of a film attaching instrument (jig) in second guide holes (10) of a film-containing base plate; bonding a placement area and an adhesion layer (F); removing the pins (16); causing a detachment between a first detachment film (C) and a pressure-sensitive adhesive optical film (D); separating three layers (D) to (F) from two layers (B) and (C); receiving the pins (16) in first guide holes (7) of a lens array main unit; fitting a film holding protrusion (15) in a depression part (6); bonding the film (D) to a bonding region (i); removing the pins (16); and causing a detachment between the film (D) and a second detachment film (E).
Abstract:
An optical receptacle disposed between a photoelectric conversion device and an optical fiber includes a light separating section for separating incident light into monitor light and fiber coupled light, which section includes a segmented reflective surface and a segmented transmitting surface. The reflective surface for reflecting light as monitor light is disposed in a segmented manner with spaces in a segmentation direction. The transmitting surface is disposed in a segmented manner in areas where the reflective surface is not disposed, so as to transmit a portion of light other than the reflected light in a direction directly oppose to the direction of the reflected light and to advance the other portion of light towards the side of an end face of the optical fiber.