摘要:
An ion source apparatus for ion implantation is described, including an ion source chamber, and a consumable structure in or associated with the ion source chamber, in which the consumable structure includes a solid dopant source material susceptible to reaction with a reactive gas for release of dopant in gaseous form to the ion source chamber, wherein the solid dopant source material comprises gallium nitride, gallium oxide, either of which may be isotopically enriched with respect to a gallium isotope, or combinations thereof.
摘要:
Ion implantation processes and systems are described, in which carbon dopant source materials are utilized to effect carbon doping. Various gas mixtures are described, including a carbon dopant source material, as well as co-flow combinations of gases for such carbon doping. Provision of in situ cleaning agents in the carbon dopant source material is described, as well as specific combinations of carbon dopant source gases, hydride gases, fluoride gases, noble gases, oxide gases and other gases.
摘要:
Ion implantation processes and systems are described, in which carbon dopant source materials are utilized to effect carbon doping. Various gas mixtures are described, including a carbon dopant source material, as well as co-flow combinations of gases for such carbon doping. Provision of in situ cleaning agents in the carbon dopant source material is described, as well as specific combinations of carbon dopant source gases, hydride gases, fluoride gases, noble gases, oxide gases and other gases.
摘要:
An isotopically-enriched, boron-containing compound comprising two or more boron atoms and at least one fluorine atom, wherein at least one of the boron atoms contains a desired isotope of boron in a concentration or ratio greater than a natural abundance concentration or ratio thereof. The compound may have a chemical formula of B2F4. Synthesis methods for such compounds, and ion implantation methods using such compounds, are described, as well as storage and dispensing vessels in which the isotopically-enriched, boron-containing compound is advantageously contained for subsequent dispensing use.
摘要:
A method of implanting carbon ions into a target substrate, including: ionizing a carbon containing dopant material to produce a plasma having ions; optionally co-flowing an additional gas or series of gases with the carbon-containing dopant material; and implanting the ions into the target substrate. The carbon-containing dopant material is of the formula CwFxOyHz wherein if w=1, then x>0 and y and z can take any value, and wherein if w>1 then x or y is >0, and z can take any value. Such method significantly improves the efficiency of an ion implanter tool, in relation to the use of carbon source gases such as carbon monoxide or carbon dioxide.
摘要:
Compositions, systems, and methods are described for implanting silicon and/or silicon ions in a substrate, involving generation of silicon and/or silicon ions from corresponding silicon precursor compositions, and implantation of the silicon and/or silicon ions in the substrate.
摘要:
Methods are described for filling gas mixture supply vessels with constituent gases to achieve precision compositions of the gas mixture, wherein the gas mixture comprises at least two constituent gases. Cascading fill techniques may be employed, involving flowing of gases from single source vessels to multiple target vessels, or from multiple source vessels to a single target vessel. The methods may be employed to form dopant gas mixtures, e.g., of boron trifluoride and hydrogen, for ion implantation applications.
摘要:
Ion implantation processes and systems are described, in which carbon dopant source materials are utilized to effect carbon doping. Various gas mixtures are described, including a carbon dopant source material, as well as co-flow combinations of gases for such carbon doping. Provision of in situ cleaning agents in the carbon dopant source material is described, as well as specific combinations of carbon dopant source gases, hydride gases, fluoride gases, noble gases, oxide gases and other gases.
摘要:
The current disclosure is directed to methods and assemblies configured to deliver a mixture of germanium tetrafluoride (GeF4) and hydrogen (H2) gases to an ion implantation apparatus, so H2 is present in an amount in the range of 25%-67% (volume) of the gas mixture, or the GeF4 and H2 are present in a volume ratio (GeF4:H2) in the range of 3:1 to 33:67. The use of the H2 gas in an amount in mixture or relative to the GeF4 gas prevents the volatilization of cathode material, thereby improving performance and lifetime of the ion implantation apparatus. Gas mixtures according to the disclosure also result in a significant Ge+ current gain and W+ peak reduction during au ion implantation procedure.
摘要:
Described are plasma immersion ion implantation methods that use multiple precursor gases, particularly for the purpose of controlling an amount of a specific atomic dopant species that becomes implanted into a workpiece relative to other atomic species that also become implanted into the workpiece during the implantation process.