摘要:
A projection system for a computer has an electronic slide (94) that is coupled to an electronic image signal (84) from a processor (82) in the computer (50). Projection optics (102) focus an optical image from the electronic slide (94) onto a screen (58).
摘要:
An optical hinge (20) provides one or more free space optical communication links through the hinge (17) of an instrument (10). The optical links include a transmitter (24) in one section (14) of the instrument (10) and a receiver (34) in the other section (16) of the instrument (10). An optical coupler (27) connects the transmitter (24) to the receiver (34) through a hinge (17).
摘要:
A flexible electro-optic circuit board (20) includes a polymer circuit board (22) and a polymer optical backplane (34). The polymer circuit board (22) includes a plurality of circuit elements (50, 52). The polymer optical backplane (34) has a plurality of optical transmission lines (44). A plurality of optical vias (30) couple the polymer circuit board (22) to the polymer optical backplane (34).
摘要:
A data transmitter (12) transmits parallel data as light pulses over multiple optical channels (14). A data receiver (16) converts the light pulses back to a voltage level and compares the voltage level to a reference capacitor voltage (42). The capacitor voltage should maintain a mid-range value for proper noise margin in detecting logic ones and logic zeroes. Any long series of consecutive logic ones or zeroes causes the capacitor voltage to charge or discharge toward the same level as the data voltage, which causes data errors. To prevent the data errors, the data is encoded (18) by inverting certain bits to break up the long series of consecutive logic states. The encoding information is transmitted as a transmitted clock to the data receiver over another fiber optic channel. The decoding information is retrieved (20) so that the encoded data can be converted back to proper logic states.
摘要:
A differential charge and dump optoelectronic receiver for baseband digital optoelectronic data links is disclosed having a preamplifier and a voltage controlled current source that defines the tail current of a differential pair functioning as a two quadrant multiplier, and using capacitors as loads on the differential pair making said differential pair an integrator. The integrator provides a full differential output, part of which is fedback to control the gain of the preamplifier. In a preferred embodiment, one integrator pair is used to recover the data from a Manchester encoded data stream. In another preferred embodiment, two pairs of integrators are used for QPSK like codes.
摘要:
A signal processing circuit (10) performs a sample and hold (16) of an input signal (14) and stores a maximum value of the input signal (18). A guardband signal (21) is developed that is less than the maximum value that is stored. The input signal is compared to the guardband signal to determine if the input signal is above or below the guardband signal. A threshold signal (25) is developed by taking a percentage of the maximum value that is stored. The input signal is compared to the threshold signal to regenerate the input waveform. If the input signal is below the guardband signal and above the threshold signal, the sample and hold circuit is reset to acquire a new maximum value of the input signal so that a new threshold can be used for regenerating the input signal.
摘要:
A wireless communication unit has two or more communication modes including one or more mobile phone mode, in which mobile phone mode the wireless communication unit is able to transmit or receive wireless signals via an antenna from and/or to a mobile phone network in accordance with a communication protocol. The unit includes a baseband module and a radiofrequency module. A radiofrequency interface of the baseband module is connected to the radiofrequency module, for receiving and/or transmitting baseband signals from and/or to the radiofrequency module. The radiofrequency module includes a baseband interface, for receiving and/or transmitting the baseband signals to the baseband module and an antenna interface (AI) connectable to an antenna for receiving and/or transmitting radiofrequency signals from and/or to the antenna. A clock system is connected to the radiofrequency interface and the baseband interface. The clock system can provide a clock signal with a clock rate of to the radiofrequency interface and the baseband interface in one or more of the one or more mobile phone modes.
摘要:
A wireless communication device comprises a first sub-system arranged to pass data to a second sub-system comprising timing synchronisation logic operably coupled to a counter, such that data is sampled by the timing synchronisation logic when passed to the second sub-system from the first sub-system wherein the wireless communication device is characterised in that the timing synchronisation logic is arranged to determine a position of a first data frame and in response thereto initiate a counting process of the counter and determine a position of a second data frame and in response thereto determine a count value from the counting process of the counter and in response to the count value determine whether to initiate a timing advance or timing retard operation on the data being passed to the second sub-system. In this manner, the inventive concept provides the wireless communication device with a mechanism to achieve timing synchronisation. In particular, the inventive concept may allow a radio frequency integrated circuit to implement timing synchronisation by advancing or retarding an ‘actual’ signal sent from digital baseband circuits in a 3G DigRF wireless communication device.
摘要:
A wireless receiver includes a hardware (HW) block, a converter block and a digital signal processor (DSP). The HW block receives a wireless signal having a first DC Offset Component (DCOC), removes a portion of the first DCOC to produce a residual DCOC centered at DC, and generates parameters that estimate the residual DCOC. The converter block is coupled to the HW block and receives the residual DCOC centered at DC and converts it to a residual DCOC centered at IF. The DSP is coupled to the HW block and the converter block and receives the residual DCOC centered at IF from the converter block and the parameters from the HW block, and uses the parameters to eliminate the residual DCOC, and generate a baseband signal that is substantially free of the first DCOC and the residual DCOC.
摘要:
A wireless communication device comprises a first sub-system arranged to pass data to a second sub-system comprising timing synchronization logic operably coupled to a counter, such that data is sampled by the timing synchronization logic when passed to the second sub-system from the first sub-system wherein the wireless communication device is characterized in that the timing synchronization logic is arranged to determine a position of a first data frame and in response thereto initiate a counting process of the counter and determine a position of a second data frame and in response thereto determine a count value from the counting process of the counter and in response to the count value determine whether to initiate a timing advance or timing retard operation on the data being passed to the second sub-system. In this manner, the inventive concept provides the wireless communication device with a mechanism to achieve timing synchronization. In particular, the inventive concept may allow a radio frequency integrated circuit to implement timing synchronization by advancing or retarding an ‘actual’ signal sent from digital baseband circuits in a 3G DigRF wireless communication device.