摘要:
A stack of vertically-connected, horizontally-oriented integrated circuits (ICs) may have electrical connections from the front side of one IC to the back side of another IC. Electrical signals may be transferred from the back side of one IC to the front side of the same IC by means of through substrate vias (TSVs), which may include through silicon vias. Electronic apparatus, systems, and methods may operate to test and/or replace defective TSVs. Additional apparatus, systems and methods are disclosed.
摘要:
A stack of vertically-connected, horizontally-oriented integrated circuits (ICs) may have electrical connections from the front side of one IC to the back side of another IC. Electrical signals may be transferred from the back side of one IC to the front side of the same IC by means of through substrate vias (TSVs), which may include through silicon vias. Electronic apparatus, systems, and methods may operate to test and/or replace defective TSVs. Additional apparatus, systems and methods are disclosed.
摘要:
A stack of vertically-connected, horizontally-oriented integrated circuits (ICs) may have electrical connections from the front side of one IC to the back side of another IC. Electrical signals may be transferred from the back side of one IC to the front side of the same IC by means of through substrate vias (TSVs), which may include through silicon vias. Electronic apparatus, systems, and methods may operate to test and/or replace defective TSVs. Additional apparatus, systems and methods are disclosed.
摘要:
A stack of vertically-connected, horizontally-oriented integrated circuits (ICs) may have electrical connections from the front side of one IC to the back side of another IC. Electrical signals may be transferred from the back side of one IC to the front side of the same IC by means of through substrate vias (TSVs), which may include through silicon vias. Electronic apparatus, systems, and methods may operate to test and/or replace defective TSVs. Additional apparatus, systems and methods are disclosed.
摘要:
Methods and apparatus are disclosed, such as those involving an inter-chip interface configured to receive and process electronic data. One such interface includes a receiver circuit that includes a clock tree configured to receive a clock signal at a clock tree input. The clock tree distributes a plurality of clock signals delayed from the clock signal such that one or more of the clock signals have a delay different from the delays of the other clock signals. The receiver circuit further includes a plurality of data input latches configured to receive a plurality of data elements over two or more different points in time. This configuration at least partially reduces crosstalk and simultaneous switching output noise.
摘要:
A method and circuit of a biased input buffer is described to maximize the quality in the output signals. The input buffer includes a first stage for receiving differential input signals and generating differential internal signals as biased in response to an averaging of the differential internal signals. The input buffer further includes a second stage coupled to the differential internal signals and configured to generate differential output signals. A memory device includes a memory array with the respective input buffer. Differential input signals are received and differential internal signals are generated as biased in response to an averaging of the differential internal signals. Differential output signals are generated in a second stage from the differential internal signals.
摘要:
A method and system for generating a reference voltage for memory device signal receivers operates in either a calibration mode or a normal operating mode. In the calibration mode, the magnitude of the reference voltage is incrementally varied, and a digital signal pattern is coupled to the receiver at each reference voltage. An output of the receiver is analyzed to determine if the receiver can accurately pass the signal pattern at each reference voltage level. A range of reference voltages that allow the receiver to accurately pass the signal pattern is recorded, and a final reference voltage is calculated at the approximate midpoint of the range. This final reference voltage is applied to the receiver during normal operation.
摘要:
A method and system for generating a reference voltage for memory device signal receivers operates in either a calibration mode or a normal operating mode. In the calibration mode, the magnitude of the reference voltage is incrementally varied, and a digital signal pattern is coupled to the receiver at each reference voltage. An output of the receiver is analyzed to determine if the receiver can accurately pass the signal pattern at each reference voltage level. A range of reference voltages that allow the receiver to accurately pass the signal pattern is recorded, and a final reference voltage is calculated at the approximate midpoint of the range. This final reference voltage is applied to the receiver during normal operation.
摘要:
A method and circuit of a biased input buffer is described to maximize the quality in the output signals. The input buffer includes a first stage for receiving differential input signals and generating differential internal signals as biased in response to an averaging of the differential internal signals. The input buffer further includes a second stage coupled to the differential internal signals and configured to generate differential output signals. A memory device includes a memory array with the respective input buffer. Differential input signals are received and differential internal signals are generated as biased in response to an averaging of the differential internal signals. Differential output signals are generated in a second stage from the differential internal signals.
摘要:
An improved reference voltage (Vref) generator useable, for example, in sensing data on single-ended channels is disclosed. The Vref generator can be placed on the integrated circuit containing the receivers, or may be placed off chip. In one embodiment, the Vref generator comprises an adjustable-resistance voltage divider in combination with a current source. The voltage divider is referenced to I/O power supplies Vddq and Vssq, with Vref being generated at a node intervening between the adjustable resistances of the voltage divider. The current source injects a current into the Vref node and into a non-varying Thevenin equivalent resistance formed of the same resistors used in the voltage divider. So constructed, the voltage generated equals the sum of two terms: a first term comprising the slope between Vref and Vddq, and a second term comprising a Vref offset. Each of these terms can be independently adjusted in first and second modes: the slope term via the voltage divider, and the offset term by the magnitude of the injected current. Use of the disclosed Vref generator in one useful implementation allows Vref to be optimized at two different values for Vddq.