摘要:
In one embodiment and method of the present invention, a coil of a write head is created by forming a P1 pedestal layer and a back gap layer and further forming a coil pattern consistent with the coil to be formed and insulator spacers dispersed in the coil pattern, using a non-damascene process, thereafter the coil is formed by plating using a damascene process.
摘要:
A magnetic head structure for use in perpendicular magnetic recording. The magnetic head includes a magnetic write head having a return pole with a magnetic shunt structure extending from the back end opposite the ABS. The magnetic shunt structure prevents magnetic field from the write coil from reaching and affecting the read head. More specifically the shunt structure prevents magnetic field from the portion of the write coil beyond the back gap (as measured from the ABS) from magnetizing a magnetic shield of the read head. The shunt structure is also configured so as to avoid stray field writing. The size and shape of the shunt structure is therefore, limited to avoid attracting stray fields that might cause such stray field writing.
摘要:
A method for manufacturing a magnetic write head for perpendicular magnetic recording. The method includes forming a write pole, and then depositing a refill layer. A mask structure can be formed over the writ pole and refill layer, the mask structure being configured to define a stitched pole. An ion milling or reactive ion milling can then be performed to remove portions of the refill layer that are not protected by the mask structure. Then a magnetic material can be deposited to form a stitched write pole that defines a secondary flare point. The stitched pole can also be self aligned with an electrical lapping guide in order to accurately locate the front edge of the secondary flare point relative to the air bearing surface of the write head.
摘要:
A method for manufacturing a magnetic head for magnetic data recording, that allows a lapping termination point to be easily and accurately determined during lapping. The method includes constructing a lapping guide that has an electrically is formed to provide an abrupt change in resistance at a point where lapping should be terminated. This point of abrupt resistance change is located relative to the flare point of the write pole that the distance between the flare point and the air bearing surface can be accurately maintained. This abrupt resistance change also makes it possible to monitor both a stripe height defining rough lapping and an angled kiss lapping process using a single measurement channel.
摘要:
In one embodiment and method of the present invention, a coil of a write head is created by forming a P1 pedestal layer and a back gap layer and further forming a coil pattern consistent with the coil to be formed and insulator spacers dispersed in the coil pattern, using a non-damascene process, thereafter the coil is formed by plating using a damascene process.
摘要:
A magnetic head structure for use in perpendicular magnetic recording. The magnetic head includes a magnetic write head having a return pole with a magnetic shunt structure extending from the back end opposite the ABS. The magnetic shunt structure prevents magnetic field from the write coil from reaching and affecting the read head. More specifically the shunt structure prevents magnetic field from the portion of the write coil beyond the back gap (as measured from the ABS) from magnetizing a magnetic shield of the read head. The shunt structure is also configured so as to avoid stray field writing. The size and shape of the shunt structure is therefore, limited to avoid attracting stray fields that might cause such stray field writing.
摘要:
A magnetic head including a media heating device that is fabricated within the magnetic head structure. The media heating device includes an electrically resistive element that is fabricated above the first magnetic pole layer close to the ABS surface of the head. A P1 pole pedestal is fabricated above the heating element. Electrical insulation layers are fabricated beneath and above the heating element to prevent electrical shorting to the P1 pole layer and the P1 pole pedestal that are disposed beneath and above the heating element, respectively.
摘要:
Magnetic heads having write coil structures with reduced electrical resistances for reducing thermal protrusion are disclosed. In one illustrative example, a magnetic head includes a magnetic yoke; a write gap layer formed between upper and lower poles of the magnetic yoke; and a write coil having a plurality of coil layers. Each coil layer of the write coil extends continuously between the upper and the lower poles through a plane defined by the write gap layer. Preferably, the write coil is formed using a damascene process, such that each coil layer is wider than each coil separating layer. Such a structure provides for a relatively large amount of coil materials to be used, which reduces the coil's electrical resistance. This, in turn, reduces the heat generated by the write coils during operation. Further, either one or both of the lower and upper poles may include a horizontally laminated structure of alternating magnetic and non-magnetic dielectric layers to further reduce heating caused by eddy current losses. Since thermal protrusion is reduced, the fly height of magnetic head may be made relatively small with a reduced risk of head-to-disk crashes and disk scratches.
摘要:
An apparatus for patterning a self-aligned coil using a damascene process is disclosed. Coil pockets are formed in a first insulation layer disposed over a first pole layer. A barrier/seed layer is deposited along walls of the coil pockets in the insulation layer. Copper is formed in the coil pockets and over the insulation layer. The copper is planarized down to the insulation layer. The self-aligned coil process packs more copper into the same coil pocket and relaxes the coil alignment tolerance. Protrusions are prevented because of the more efficient and uniform spacing of the coil to reduce heat buildup in the head during a write.