Abstract:
Provided is a method of choosing a communication mode of an RFID device which supports near-field communication and far-field communication, including: interrupting generation of a self RF field signal; determining whether or not an RF field signal for near-field communication is detected; choosing the near-field communication mode when an external RF field signal for near-field communication is detected; and generating the self RF field signal for far-field communication when the external RF field signal for near-field communication is not detected, and choosing the communication mode according to whether or not a response signal is received.
Abstract:
A reader antenna includes dipole antennas, the dipole antennas including: a horizontal dipole antenna having the characteristic of horizontal polarization; and a dipole antenna perpendicular to the horizontal dipole antenna and including a vertical dipole antenna having the characteristic of vertical polarization, wherein the horizontal dipole antenna and the vertical dipole antenna may both have the characteristic of circular polarization. The reader antenna can be easily stored in an electronic shelf because it is realized in an ultrathin structure using a single-layered dielectric substrate.
Abstract:
A receiving apparatus for an RFID reader estimates channel coefficients for each of a plurality of receiving antennas based on tag response signals received via a plurality of receiving antennas, compensates the tag response signals received via the plurality of receiving antennas based on the channel coefficients estimated for each of a plurality of channel estimators, combines the compensated tag response signals for each of the plurality of receiving antennas to generate a combined signal, and detect bits in the combined signal.
Abstract:
Provided is a transmitting/receiving antenna, including: an array antenna including a plurality of element antennas; and a feeding part transmitting a transmitting signal to the plurality of element antennas and receiving a signal received through the array antenna, in which the plurality of element antennas each include a radiation patch and a transmitting port and a receiving port positioned between the feeding part and the radiation patch.
Abstract:
Disclosed are an apparatus and a method for transmitting a tag. The apparatus for transmitting a tag converts 2 bits of a plurality of bit data into one symbol using phase information and orthogonal information. The apparatus for transmitting a tag generates a sub-carrier signal by multiplying the symbol by a square wave having a faster period by a predetermined number of times than a period of the symbol, and transmits the sub-carrier signal to a reader
Abstract:
Disclosed herein are a tag transmission apparatus and a signal transmitting method thereof. The tag transmission apparatus converts a plurality of data bits into a symbol, which is one of a plurality of symbols, and multiplies the converted symbol by a square-wave having a predetermined frequency to thereby generate a subcarrier signal. Here, in the case in which the plurality of data bits are n (n is a natural number larger than 2) bits, the number of the plurality of symbols is 2n.
Abstract:
A loop antenna includes first and second loops that are formed with respective conductive wires. In this case, the second loop is formed with a double loop having current paths of opposite directions.
Abstract:
A tag of an apparatus for simultaneously identifying massive tags according to the present invention may include an analog circuit unit to communicate with a reader through an analog signal and to receive energy via magnetic coupling with the reader. Further, the tag may include a digital circuit unit to be supplied with power from the analog circuit unit. The digital circuit unit may support a sleep mode for the tag to stand by in a low power state after transmitting an identifier (ID) to the reader and a wait mode for controlling random access to the reader.
Abstract:
A reader antenna includes dipole antennas, the dipole antennas including: a horizontal dipole antenna having the characteristic of horizontal polarization; and a dipole antenna perpendicular to the horizontal dipole antenna and including a vertical dipole antenna having the characteristic of vertical polarization, wherein the horizontal dipole antenna and the vertical dipole antenna may both have the characteristic of circular polarization. The reader antenna can be easily stored in an electronic shelf because it is realized in an ultrathin structure using a single-layered dielectric substrate.
Abstract:
There is provided an RFID tag having multi-voltage multipliers including two or more antennas configured to receive electromagnetic waves emitted from a reader, a first voltage multiplier configured to be connected to one of the antennas and change the received AC electromagnetic waves to DC voltage signals, a modulator configured to transmit backscattering communication signals by changing impedance through the antenna connected to the first voltage multiplier, and a second voltage multiplier configured to be connected to another antenna among the antennas and change AC electromagnetic waves received from the other antenna to DC voltage signals.