Abstract:
Described embodiments include a plasmonic apparatus and method. The plasmonic apparatus includes a substrate having a first negative-permittivity layer comprising a first plasmonic surface. The plasmonic apparatus includes a plasmonic nanoparticle having a base with a second negative-permittivity layer comprising a second plasmonic surface. The plasmonic apparatus includes a dielectric-filled gap between the first plasmonic surface and the second plasmonic surface. The plasmonic apparatus includes a plasmonic cavity created by an assembly of the first plasmonic surface, the second plasmonic surface, and the dielectric-filled gap, and having a spectrally separated first fundamental resonant cavity wavelength λ1 and second fundamental resonant cavity wavelength λ2. The plasmonic apparatus includes a plurality of fluorescent particles located in the dielectric-filled gap. Each fluorescent particle of the plurality of fluorescent particles having an absorption spectrum including the first fundamental resonant cavity wavelength λ1 and an emission spectrum including the second fundamental resonant cavity wavelength λ2.
Abstract:
Described embodiments include a system, method, and apparatus. A system includes an extracellular-fluid collection device configured to be positioned at a location on a skin of a mammal. In an embodiment, the mammal includes a live human. The system includes an ultrasonic wave transmitter configured to emit ultrasonic shear waves directable at the location. The ultrasonic shear waves have a frequency or amplitude selected to increase a permeability of the skin of the mammal to an extracellular-fluid. In an embodiment, the system includes a sensor configured to determine a rate or amount of extracellular-fluid collected by the extracellular-fluid collection device. In an embodiment, the system includes a fluid collection controller configured to regulate a parameter of ultrasonic shear waves transmitted by the ultrasonic wave transmitter in response to a determined rate or amount of fluid collected by the extracellular-fluid collection device.
Abstract:
A system and method for payload management for a UAV/aircraft is disclosed. UAV/craft may be configured for a mission with aerodynamically-exposed payload to be delivered from originator to destination on a route in operating conditions. UAV/aircraft may provide an aerodynamic profile indicative of the expected aerodynamic performance in view of considerations such as flight characteristics and effects; a base aerodynamic profile without payload and a loaded aerodynamic profile with payload may be determined. The system and method may comprise estimation/determination and assessment/transaction of a freight charge for the mission based on aerodynamic profile and other considerations; freight charge may comprise a surcharge or penalty based on performance using unit reference points and factors/considerations. UAV/aircraft system can be configured and operated/managed to interface with the system; missions may be optimized based on freight charge or other considerations. The system comprises an interface with UAV/aircraft and data sources and/or networks for data communications.
Abstract:
A system and method for repowering an unmanned aircraft system is disclosed. The system and method may comprise use of a utility transmission system configured to function as power system/source for UAV/aircraft and UAV/aircraft configured to interface with the power source/system. Systems and methods provide access and for administrating, managing, and monitoring access and interfacing by UAV/aircraft with the power system/source. UAV/aircraft system can be configured and operated/managed to interface with and use the power system/source (e.g. network of power lines from a utility transmission system) to enhance range and utility (e.g. for repowering and/or as a flyway or route). The system comprises an interface between the aircraft and the power source for power transfer; a monitoring system to monitor the aircraft; and an administrative/management system to manage interaction/transaction with the aircraft. The power source for power transfer may be a power line; power transfer to the aircraft may be by wireless power transfer (capacitive or inductive or optical) of an aircraft while at or operating along the power line. The aircraft may comprise a connector configured to interface with the power source/line; the power line may be configured to interface with the connector/aircraft. Data communications between the aircraft and system may be facilitated for interaction/transaction.
Abstract:
Described embodiments include a system, method, and apparatus. A system includes a medicament-eluting device configured to be positioned at a location on a skin of a mammal. The system includes an ultrasonic wave transmitter configured to emit ultrasonic shear waves directable at the location. The ultrasonic shear waves have a frequency or amplitude selected to increase a permeability of the skin of the mammal to a medicament released by the medicament-eluting device. In an embodiment, the system includes a structure carrying the medicament-eluting device and the ultrasonic wave transmitter. In an embodiment, the system includes a cavitation sensor configured to detect a cavitation event in the mammal. In an embodiment, the system includes a cavitation controller configured to limit a power of the ultrasonic shear waves directed at the location to a level below a cavitation threshold of the mammal.
Abstract:
A system and method for repowering an unmanned aircraft system is disclosed. The system and method may comprise use of a utility transmission system configured to function as power system/source for UAV/aircraft and UAV/aircraft configured to interface with the power source/system. Systems and methods provide access and for administrating, managing, and monitoring access and interfacing by UAV/aircraft with the power system/source. UAV/aircraft system can be configured and operated/managed to interface with and use the power system/source (e.g. network of power lines from a utility transmission system) to enhance range and utility (e.g. for repowering and/or as a flyway or route). The system comprises an interface between the aircraft and the power source for power transfer; a monitoring system to monitor the aircraft; and an administrative/management system to manage interaction/transaction with the aircraft. The power source for power transfer may be a power line; power transfer to the aircraft may be by wireless power transfer (capacitive or inductive or optical) of an aircraft while at or operating along the power line. The aircraft may comprise a connector configured to interface with the power source/line; the power line may be configured to interface with the connector/aircraft. Data communications between the aircraft and system may be facilitated for interaction/transaction.
Abstract:
A composite medium may be artificially structured to enhance electron-phonon coupling in the composite medium, whereby to enhance a Cooper pairing instability in the composite medium. This yields a composite superconductor with superconducting properties (energy gap, critical temperature, etc.) more robust than the superconducting properties of the constituent media. The electron-phonon coupling may be enhanced by increasing the phononic density of states in the composite medium, by introducing hyperbolic phononic dispersion, phononic van Hove singularities, and/or reduced phonon group velocities.