Abstract:
A hard disk drive includes a storage surface, a motor, a read/write had, and a number of regions into which the storage surface is divisible. Data is writable to and data is readable from the storage surface. The motor is to rotate the storage surface at a variable speed. The read/write head is to write data to and read data from the storage surface while the storage surface is rotated by the motor. Each region corresponds to a different speed at which the storage surface is rotated for the read/write head to write data to and read data from the region.
Abstract:
A hard disk drive includes a storage surface, a motor, a read/write had, and a number of regions into which the storage surface is divisible. Data is writable to and data is readable from the storage surface. The motor is to rotate the storage surface at a variable speed. The read/write head is to write data to and read data from the storage surface while the storage surface is rotated by the motor. Each region corresponds to a different speed at which the storage surface is rotated for the read/write head to write data to and read data from the region.
Abstract:
A system includes a number of hard disk drives and a controller. Each hard disk drive is selected from a number of different hard disk drive types. Each hard disk drive type has a different speed at which the hard disk drives of the hard disk drive type rotate to read and write data. At least one of the hard disk drives is of a different hard disk drive type than at least one other of the hard disk drives. The controller, responsive to a request to write particular data to the hard disk drives, is to select a given hard disk drive of the hard disk drives based on a type of the particular data, and is to write the particular data to the given hard disk drive.
Abstract:
A system includes a number of hard disk drives and a controller. Each hard disk drive is selected from a number of different hard disk drive types. Each hard disk drive type has a different speed at which the hard disk drives of the hard disk drive type rotate to read and write data. At least one of the hard disk drives is of a different hard disk drive type than at least one other of the hard disk drives. The controller, responsive to a request to write particular data to the hard disk drives, is to select a given hard disk drive of the hard disk drives based on a type of the particular data, and is to write the particular data to the given hard disk drive.
Abstract:
To determine files associated with one or more workflows, a trace of accesses of files in at least one server is received. The files are grouped into at least one set of files, where the files in the set are accessed together more than a predetermined number of times in the trace. Files associated with the particular workflow are identified based on the at least one set.
Abstract:
Embodiments of the present invention pertain to improving recoverability of a dataset associated with a multi-tier storage system. According to one embodiment, updates to a dataset are stored in first storage. The dataset and a point-in-time copy of the dataset reside on second storage, and the first storage provides higher reliability than the second storage. The dataset is restored using at least a subset of the stored updates in combination with the point-in-time copy in the event that the dataset is lost.
Abstract:
A method for controlling resource allocation is provided. The method includes determining a service metric associated with a first application, wherein the first application is associated with one or more virtual machines. The method further includes comparing the service metric to an application specific service level goal associated with the first application and modifying a resource allocation associated with the first application at one or more of the virtual machines.
Abstract:
A transactional memory system uses a volatile memory as primary storage for transactions. Data is selectively stored in a non-volatile memory to impart durability to the transactional memory system to allow the transactional memory system to be restored to a consistent state in the event of data loss to the volatile memory.
Abstract:
There is provided a computer-implemented method for selecting from a plurality of full configurations of a storage system an operational configuration for executing an application. An exemplary method comprises obtaining application performance data for the application on each of a plurality of test configurations. The exemplary method also comprises obtaining benchmark performance data with respect to execution of a benchmark on the plurality of full configurations, one or more degraded configurations of the full configurations and the plurality of test configurations. The exemplary method additionally comprises estimating a metric for executing the application on each of the plurality of full configurations based on the application performance data and the benchmark performance data. The operational configuration may be selected from among the plurality full configurations based on the metric.
Abstract:
A system and method for allocating resources on a shared storage system are disclosed. The system 10 can include a shared storage device 12 and a plurality of port schedulers 14 associated with a plurality of I/O ports 16 that are in communication with the shared storage device 12. Each port scheduler 14 is configured to enforce a concurrency level and a proportional share of storage resources of the shared storage device 12 for each application 18 utilizing the associated port. The system 10 can also include a resource controller 17 that is configured to both monitor performance characteristics of the applications 18 utilizing at least one of the I/O ports 16, and to adjust the concurrency level and the proportional share of storage resources parameters of the port schedulers 14 for at least a portion of the applications 18 in order to vary allocation of the resources of the shared storage device 12.