Abstract:
A sample receiving chip comprising a substrate that receives an aliquot volume of a sample fluid and a sample region of the substrate, sized such that the volume of the sample fluid is sufficient to operatively cover a portion of the sample region. The energy imparted into the sample fluid is transduced by the sample region to produce an output signal that indicates energy properties of the sample fluid. The sample receiving chip also includes a channel formed in the substrate, the channel configured to collect the aliquot volume of a sample fluid and transfer the aliquot volume of sample fluid to the sample region.
Abstract:
An osmolarity measuring system comprising microscale electrode arrays is configured to account for variations and defects in the arrays using a tiered approach comprising several calibration methods. One method accounts for the intrinsic conductivity of the electrodes and subtracts out the intrinsic conductivity on a pair-wise basis, when determining osmolarity of a sample fluid. Other methods in the tiered approach use standards to determine calibration factors for the electrodes that can then be used to adjust subsequent osmolarity measurements for a sample fluid. The use of a standard can also be combined with a washing step.
Abstract:
A sample receiving chip comprising a substrate that receives an aliquot volume of a sample fluid and a sample region of the substrate, sized such that the volume of the sample fluid is sufficient to operatively cover a portion of the sample region. The energy imparted into the sample fluid is transduced by the sample region to produce an output signal that indicates energy properties of the sample fluid. The sample receiving chip also includes a channel formed in the substrate, the channel configured to collect the aliquot volume of a sample fluid and transfer the aliquot volume of sample fluid to the sample region.
Abstract:
A sample receiving chip comprising a substrate that receives an aliquot volume of a sample fluid and a sample region of the substrate, sized such that the volume of the sample fluid is sufficient to operatively cover a portion of the sample region. The energy imparted into the sample fluid is transduced by the sample region to produce an output signal that indicates energy properties of the sample fluid. The sample receiving chip also includes a channel formed in the substrate, the channel configured to collect the aliquot volume of a sample fluid and transfer the aliquot volume of sample fluid to the sample region.
Abstract:
An osmolarity measuring system includes the ability to recognize patterns within the electrical profile of nanoliters of fluid an account for corruptive signals in the electrical profile. These corruptive signals are mainly caused by the mechanical relaxation of the sample fluid after delivery or evaporation across the electrodes.
Abstract:
A sample receiving chip comprising a substrate that receives an aliquot volume of a sample fluid and a sample region of the substrate, sized such that the volume of the sample fluid is sufficient to operatively cover a portion of the sample region. The energy imparted into the sample fluid is transduced by the sample region to produce an output signal that indicates energy properties of the sample fluid. The sample receiving chip also includes a channel formed in the substrate, the channel configured to collect the aliquot volume of a sample fluid and transfer the aliquot volume of sample fluid to the sample region.
Abstract:
A fluid collection device comprising a body comprising a capsule interface, and a capsule configured to interface with the body via the capsule interface and configured to hold a sample receiving chip. The sample receiving chip comprises a substrate that receives an aliquot volume of a sample fluid, wherein the substrate is operatively shaped to receive the aliquot volume of sample fluid through capillary action, and a sample region of the substrate, sized such that the volume of the sample fluid is sufficient to operatively cover a portion of the sample region, whereupon energy properties of the sample fluid can be transduced to produce a sample fluid reading.
Abstract:
A sample receiving chip comprising a substrate that receives an aliquot volume of a sample fluid and a sample region of the substrate, sized such that the volume of the sample fluid is sufficient to operatively cover a portion of the sample region. The energy imparted into the sample fluid is transduced by the sample region to produce an output signal that indicates energy properties of the sample fluid. The sample receiving chip also includes a channel formed in the substrate, the channel configured to collect the aliquot volume of a sample fluid and transfer the aliquot volume of sample fluid to the sample region.
Abstract:
A fluid collection device comprising a body comprising a capsule interface, and a capsule configured to interface with the body via the capsule interface and configured to hold a sample receiving chip. The sample receiving chip comprises a substrate that receives an aliquot volume of a sample fluid, wherein the substrate is operatively shaped to receive the aliquot volume of sample fluid through capillary action, and a sample region of the substrate, sized such that the volume of the sample fluid is sufficient to operatively cover a portion of the sample region, whereupon energy properties of the sample fluid can be transduced to produce a sample fluid reading.
Abstract:
An osmolarity measuring system comprising microscale electrode arrays is configured to account for variations and defects in the arrays using a tiered approach comprising several calibration methods. One method accounts for the intrinsic conductivity of the electrodes and subtracts out the intrinsic conductivity on a pair-wise basis, when determining osmolarity of a sample fluid. Other methods in the tiered approach use standards to determine calibration factors for the electrodes that can then be used to adjust subsequent osmolarity measurements for a sample fluid. The use of a standard can also be combined with a washing step.