摘要:
Salicide processing is implemented with silicon nitride sidewall spacers by initially depositing a refractory metal, e.g., Ni, in the presence of nitrogen to form a metal nitride layer to prevent the reaction of the deposited metal with free Si in silicon nitride sidewall spacers, thereby avoiding bridging between the metal silicide layer on the gate electrode and the metal silicide layers on the source/drain regions of a semiconductor device.
摘要:
A method of manufacturing an integrated circuit (IC) utilizes a shallow trench isolation (STI) technique. The shallow trench isolation technique is used in strained silicon (SMOS) process. The liner for the trench is formed from a semiconductor or metal layer which is deposited in a low temperature process which reduces germanium outgassing. The low temperature process can be a ALD process.
摘要:
A self-aligned silicide process that can accommodate a low thermal budget and form silicide regions of small dimensions in a controlled reaction. In a first temperature treatment, nickel metal or nickel alloy is reacted with a silicon material to form at least one high resistance nickel silicide region. Unreacted nickel is removed. A dielectric layer is then deposited over a high resistance nickel silicide regions. In a second temperature treatment, the at least one high resistance nickel silicide region and dielectric layer are reacted at a prescribed temperature to form at least one low resistance silicide region and process the dielectric layer. Bridging between regions is avoided by the two-step process as silicide growth is controlled, and unreacted nickel between silicide regions is removed after the first temperature treatment. The processing of the high resistance nickel silicide regions and the dielectric layer are conveniently combined into a single temperature treatment.
摘要:
A method of manufacturing an integrated circuit (IC) utilizes a shallow trench isolation (STI) technique. The shallow trench isolation technique is used in strained silicon (SMOS) process. The liner for the trench is formed from a semiconductor or metal layer which is deposited in a low temperature process which reduces germanium outgassing. The low temperature process can be a ALD process.
摘要:
A method of manufacturing an integrated circuit (IC) utilizes a shallow trench isolation (STI) technique. The shallow trench isolation technique is used in strained silicon (SMOS) process. The liner for the trench is formed to in a low temperature process which reduces germanium outgassing. The low temperature process can be a UVO, ALD, CVD, PECVD, or HDP process.
摘要:
A method of manufacturing an integrated circuit (IC) utilizes a shallow trench isolation (STI) technique. The shallow trench isolation technique is used in strained silicon (SMOS) process. The liner for the trench is formed from a semiconductor or metal layer which is deposited in a low temperature process which reduces germanium outgassing. The low temperature process can be a CVD process.
摘要:
An integrated circuit includes multiple layers. A semiconductor-on-insulator (SOI) wafer can be used to house transistors. Two substrates or wafers can be bonded to form the multiple layers. A strained semiconductor layer can be between a silicon germanium layer and a buried oxide layer. A hydrogen implant can provide a breaking interface to remove a silicon substrate from the silicon germanium layer.
摘要:
A method of manufacturing an integrated circuit (IC) utilizes a shallow trench isolation (STI) technique. The shallow trench isolation technique is used in a strained silicon (SMOS) process. The liner for the trench is formed from a layer deposited in a low temperature process which reduces germanium outgassing. The low temperature process can be an LPCVD. An annealing step can be utilized to form the liner.
摘要:
A MOSFET gate or a MOSFET source or drain region comprises silicon germanium or polycrystalline silicon germanium. Silicidation with nickel is performed to form a nickel germanosilicide that preferably comprises the monosilicide phase of nickel silicide. The inclusion of germanium in the silicide provides a wider temperature range within which the monosilicide phase may be formed, while essentially preserving the superior sheet resistance exhibited by nickel monosilicide. As a result, the nickel germanosilicide is capable of withstanding greater temperatures during subsequent processing than nickel monosilicide, yet provides approximately the same sheet resistance and other beneficial properties as nickel monosilicide.
摘要:
High quality dielectric layers, e.g., high-k dielectric layers comprised of at least one refractory or lanthanum series transition metal oxide or silicate, for use as gate insulator layers in in-laid metal gate MOS transistors and CMOS devices, are formed by electrolessly plating a metal or metal-based dielectric precursor layer comprising at least one refractory or lanthanum series transition metal, such as of Zr and/or Hf, on a silicon-based semiconductor substrate and then reacting the precursor layer with oxygen or with oxygen and the Si-based semiconductor substrate to form the at least one metal oxide or silicate. The inventive methodology prevents, or at least substantially reduces, oxygen access to the substrate surface during at least the initial stage(s) of formation of the gate insulator layer, thereby minimizing deleterious formation of oxygen-induced surface states at the semiconductor substrate/gate insulator interface.