Optical assembly for laser radar
    2.
    发明授权
    Optical assembly for laser radar 有权
    激光雷达光学组件

    公开(公告)号:US08724095B2

    公开(公告)日:2014-05-13

    申请号:US13281397

    申请日:2011-10-25

    IPC分类号: G01C3/08

    摘要: A compact optical assembly for a laser radar system is provided, that is configured to move as a unit with a laser radar system as the laser radar system is pointed at a target and eliminates the need for a large scanning (pointing) mirror that is moveable relative to other parts of the laser radar. The optical assembly comprises a light source, a lens, a scanning reflector and a fixed reflector that are oriented relative to each other such that: (i) a beam from the light source is reflected by the scanning reflector to the fixed reflector; (ii) reflected light from the fixed reflector is reflected again by the scanning reflector and directed along a line of sight through the lens; and (iii) the scanning reflector is moveable relative to the source, the lens and the fixed reflector, to adjust the focus of the beam along the line of sight.

    摘要翻译: 提供了一种用于激光雷达系统的紧凑型光学组件,其被配置为随着激光雷达系统指向目标而与激光雷达系统一起移动,并且消除了对可移动的大扫描(指向)镜的需要 相对于激光雷达的其他部分。 光学组件包括相对于彼此定向的光源,透镜,扫描反射器和固定反射器,使得:(i)来自光源的光束被扫描反射器反射到固定反射器; (ii)来自固定反射器的反射光再次被扫描反射器反射并沿着视线穿过透镜; 和(iii)扫描反射器相对于光源,透镜和固定反射器可移动,以便沿着视线调节光束的焦点。

    Optical Assembly for Laser Radar
    3.
    发明申请
    Optical Assembly for Laser Radar 有权
    激光雷达光学组件

    公开(公告)号:US20130099957A1

    公开(公告)日:2013-04-25

    申请号:US13281397

    申请日:2011-10-25

    IPC分类号: G01S13/00 G02B26/10

    摘要: A compact optical assembly for a laser radar system is provided, that is configured to move as a unit with a laser radar system as the laser radar system is pointed at a target and eliminates the need for a large scanning (pointing) mirror that is moveable relative to other parts of the laser radar. The optical assembly comprises a light source, a lens, a scanning reflector and a fixed reflector that are oriented relative to each other such that: (i) a beam from the light source is reflected by the scanning reflector to the fixed reflector; (ii) reflected light from the fixed reflector is reflected again by the scanning reflector and directed along a line of sight through the lens; and (iii) the scanning reflector is moveable relative to the source, the lens and the fixed reflector, to adjust the focus of the beam along the line of sight.

    摘要翻译: 提供了一种用于激光雷达系统的紧凑型光学组件,其被配置为随着激光雷达系统指向目标而与激光雷达系统一起移动,并且消除了对可移动的大扫描(指向)镜的需要 相对于激光雷达的其他部分。 光学组件包括相对于彼此定向的光源,透镜,扫描反射器和固定反射器,使得:(i)来自光源的光束被扫描反射器反射到固定反射器; (ii)来自固定反射器的反射光再次被扫描反射器反射并沿着视线穿过透镜; 和(iii)扫描反射器相对于光源,透镜和固定反射器可移动,以便沿着视线调节光束的焦点。

    MEASUREMENT STAGE WITH TUBE CARRIER
    4.
    发明申请
    MEASUREMENT STAGE WITH TUBE CARRIER 审中-公开
    带管子的测量阶段

    公开(公告)号:US20120325027A1

    公开(公告)日:2012-12-27

    申请号:US13526322

    申请日:2012-06-18

    IPC分类号: G01D21/00

    摘要: In one embodiment, a stage apparatus includes a wafer stage, at least one conduit, and a measurement stage. The at least one conduit is coupled between the wafer stage and a ground. The measurement stage is configured to approximately follow the wafer stage during at least a portion of a motion of the wafer stage, and is configured to carry the at least one conduit to reduce disturbances on the wafer stage caused by the at least one conduit.

    摘要翻译: 在一个实施例中,舞台装置包括晶片台,至少一个导管和测量台。 至少一个导管连接在晶片台和地之间。 测量级被配置为在晶片台的运动的至少一部分期间大致跟随晶片台,并且被配置为承载至少一个管道以减少由至少一个导管引起的晶片台上的干扰。

    Method for sintering mechanisms
    5.
    发明授权
    Method for sintering mechanisms 失效
    烧结机理方法

    公开(公告)号:US06352669B1

    公开(公告)日:2002-03-05

    申请号:US09426085

    申请日:1999-10-22

    IPC分类号: C04B3332

    CPC分类号: C04B33/32

    摘要: The invention utilizes green support structures during sintering to maintain the shape, reduce sagging and prevent separate part sections from coming into contact and fusing together during the sintering process. In the most preferred embodiment, monolithic green structures are form with integrated support green structures that are released from the parts after sintering. Preferably monolithic green structures are formed by the Mold Shape Deposition Manufacturing (Mold SDM) process. By the method described, complex sintered structures can be made having interlocking and independently movable interlocking parts.

    摘要翻译: 本发明在烧结过程中利用绿色支撑结构来保持形状,减少下垂并防止分离的部分在烧结过程中接触并融合在一起。 在最优选的实施方案中,整体式绿色结构形式具有在烧结后从部件释放的集成支撑绿色结构。 优选地,整体式绿色结构通过模具形状沉积制造(Mold SDM)方法形成。 通过所述方法,可以制成具有互锁和独立可移动的互锁部件的复合烧结结构。

    Shape deposition manufacturing of microscopic ceramic and metallic parts using silicon molds
    6.
    发明授权
    Shape deposition manufacturing of microscopic ceramic and metallic parts using silicon molds 失效
    使用硅模具的微观陶瓷和金属部件的形状沉积制造

    公开(公告)号:US06242163B1

    公开(公告)日:2001-06-05

    申请号:US09387328

    申请日:1999-08-31

    IPC分类号: C23F100

    摘要: Micro-Mold Shape Deposition Manufacturing (&mgr;-Mold SDM) is a method for fabricating complex, three-dimensional microstructures from layered silicon molds. Silicon wafers are etched using conventional silicon-processing techniques to produce wafers with surface patterns, some of which contain through-etched regions. The wafers are then stacked and bonded together to form a mold, which is filled with part material. In one embodiment, the part material is a ceramic or metallic gelcasting slurry that is poured into the mold and solidified to form a part precursor. The mold is removed, and the precursor is sintered to form the final part. The gelcasting material may also be a polymer or magnetic slurry, in which case sintering is not needed. The mold can also be filled by electroplating a metal into it; if necessary, each layer is filled with metal after being bonded to a previously filled layer. Patterned silicon wafer layers may also be combined with macroscopic wax layers formed by Mold SDM to create macroscopic parts with some microscopic parts or features.

    摘要翻译: 微模形状沉积制造(mu-Mold SDM)是从分层硅模制造复杂的三维微结构的方法。 使用常规的硅处理技术来蚀刻硅晶片以产生具有表面图案的晶片,其中一些具有贯通蚀刻区域。 然后将晶片堆叠并结合在一起以形成用部件材料填充的模具。 在一个实施例中,部件材料是陶瓷或金属凝胶浇注浆料,其被倒入模具中并固化以形成部件前体。 去除模具,并将前体烧结以形成最终部分。 凝胶浇铸材料也可以是聚合物或磁性浆料,在这种情况下不需要烧结。 模具也可以通过将金属电镀到其中来填充; 如果需要,每层在结合到预先填充的层之后都填充有金属。 图案化的硅晶片层还可以与由模具SDM形成的宏观蜡层组合以产生具有一些微观部件或特征的宏观部件。

    Thermally Conductive Coil and Methods and Systems
    9.
    发明申请
    Thermally Conductive Coil and Methods and Systems 有权
    导热线圈和方法与系统

    公开(公告)号:US20110109419A1

    公开(公告)日:2011-05-12

    申请号:US12616907

    申请日:2009-11-12

    IPC分类号: H01F27/32

    CPC分类号: H01F5/06 H01F27/22 H01F41/074

    摘要: Embodiments of the invention provide improved thermal conductivity within, among other things, electromagnetic coils, coil assemblies, electric motors, and lithography devices. In one embodiment, a thermally conductive coil includes at least two adjacent coil layers. The coil layers include windings of wires formed from a conductor and an insulator that electrically insulates the windings within each coil layer. In some cases the insulator of the wires is at least partially absent along an outer surface of one or both coil layers to increase the thermal conductivity between the coil layers. In some embodiments, an insulation layer is provided between the coil layers to electrically insulate the coil layers. In some cases the insulation layer has a thermal conductivity greater than the thermal conductivity of the wire insulator.

    摘要翻译: 本发明的实施例尤其提供了电磁线圈,线圈组件,电动马达和光刻装置之内的改进的导热性。 在一个实施例中,导热线圈包括至少两个相邻的线圈层。 线圈层包括由导体和绝缘体形成的导线的绕组,其将线圈电绝缘在每个线圈层内。 在一些情况下,线的绝缘体至少部分地沿着一个或两个线圈层的外表面不存在,以增加线圈层之间的热导率。 在一些实施例中,绝缘层设置在线圈层之间以使线圈层电绝缘。 在一些情况下,绝缘层的导热率大于导线绝缘体的导热率。