摘要:
A method is disclosed for the formation of a planarizing coating film on the surface of a substrate having a stepped level difference under processing for the manufacture of semiconductor devices. The inventive method capable of giving a planarizing coating film of excellent planarity and good adhesion to the substrate surface comprises the steps of: (a) coating the substrate surface with a coating solution containing, as a film-forming solute uniformly dissolved in an ,organic solvent, a nitrogen-containing organic compound such as benzoguanamine and melamine having, in a molecule, at least two amino and/or imino groups each substituted for the nitrogen-bonded hydrogen atom by a hydroxyalkyl group or an alkoxyalkyl group to form a coating layer; (b) drying the coating layer by evaporating the organic solvent to form a dried coating layer; and (c) subjecting the dried coating layer to a baking treatment at a temperature in the range from 150 to 250° C.
摘要:
Disclosed is a novel undercoating solution for the formation of an antireflection undercoating layer to intervene between the surface of a substrate and a photoresist layer to be patterned in the manufacturing process of semiconductor devices with an object to prevent adverse influences of the light reflecting at the substrate surface on the cross sectional profile of the patterned resist layer. The under-coating composition is a uniform solution which comprises: (A) a nitrogen-containing organic compound having, in a molecule, at least two amino groups substituted by at least one substituent group selected from the group consisting of hydroxyalkyl groups and alkoxyalkyl groups such as an N,N-substituted benzoguanamine compound; (B) an organic acid or an inorganic acid of which the acid residue contains at least one atom of sulfur such as methane-sulfonic acid and dodecylbenzene sulfonic acid; (C) an organic solvent such as propyleneglycol monomethyl ether; and (D) a light-absorbing compound which is preferably 9-anthra-cene carboxylic acid or 9,10-anthracene dicarboxylic acid.
摘要:
Disclosed is a novel undercoating solution for the formation of an antireflection undercoating layer to intervene between the surface of a substrate and a photoresist layer to be patterned in the manufacturing process of semiconductor devices with an object to prevent adverse influences of the light reflecting at the substrate surface on the cross sectional profile of the patterned resist layer. The undercoating composition is a uniform solution which comprises: (A) a nitrogen-containing organic compound having, in a molecule, at least two amino groups substituted by at least one substituent group selected from the group consisting of hydroxyalkyl groups and alkoxyalkyl groups such as an N,N-substituted benzoguanamine compound; (B) an organic acid or an inorganic acid of which the acid residue contains at least one atom of sulfur such as methanesulfonic acid and dodecylbenzene sulfonic acid; and (C) an organic solvent such as propyleneglycol monomethyl ether. The undercoating solution further optionally contains a light-absorbing compound such as bis(4-hydroxyphenyl) sulfone and 9-hydroxymethyl anthracene.
摘要:
The present invention provides a composition for forming an antireflective coating film which is not liable to intermixing between the resist composition layer and the antireflective coating layer and a method for forming a resist pattern having an excellent dimensional accuracy and section shape. The composition consists of (A) a compound which produces an acid upon irradiation with actinic rays, (B) a compound which undergoes crosslinking reaction in the presence of an acid, (C) a dye and (D) an organic solvent. The method for forming a resist pattern comprises applying the composition for forming an antireflective coating film to a semiconductor substrate, drying the composition coated, irradiating the entire surface of the coated material with actinic rays so that it undergoes crosslinking reaction to form an antireflective coating film thereon, applying a resist composition to the antireflective coating film, drying the coated material, and then subjecting the coated material to lithographic processing to form a resist pattern thereon.
摘要:
A method for forming a wiring structure on a semiconductor substrate, comprising the following steps: a step for forming a low dielectric constant dielectric film and an etching stopper, sequentially, on said semiconductor substrate; a step for forming a resist mask having a pattern for forming via-holes on the etching stopper film; a step for forming via-holes on the low dielectric constant dielectric film through said resist mask; a step for filling said via-holes with an embedding material and for heating the embedding material to harden; a step for maintaining the embedding material at a predetermined thickness on the bottoms of the via-holes by performing etching back on the embedding material being heated to be harden; a step for forming a resist mask having a pattern for forming trench holes on said etching stopper film; a step for forming the trench holes on said low dielectric film constant dielectric through said resist mask, while removing the embedding material remaining on the bottoms of said via-holes; and a step for embedding metal into said trench holes and said via-holes, wherein the embedding material mainly includes a thermo-bridge forming compound therein, thereby generating no bubbles even when said embedding material is being filled into gutters having a large aspect ratio thereof.
摘要:
An undercoating composition layer to intervene between the surface of a substrate, e.g., a silicon wafer, and a photoresist layer to prevent noxious reflection of exposure light on the substrate surface in the photolithographic patterning work for the manufacture of semiconductor devices comprising: (A) a nitrogen-containing organic compound, as a crosslinking agent, having, in a molecule, at least two amino groups each substituted by at least one substituent selected from the group consisting of hydroxyalkyl groups and alkoxyalkyl groups; and (B) a homopolymer of or a copolymer of a mixture of monomers of which one is a (meth)acrylic acid ester of an aromatic hydroxyl compound selected from the group consisting of bisphenylsulfone compounds having at least one hydroxyl group in a molecule and benzophenone compounds having at least one hydroxyl group in a molecule in a specified proportion.
摘要:
Proposed is a novel undercoating composition used in the photolithographic patterning of a photoresist layer by intervening between the substrate surface and the photoresist layer to decrease the adverse influences of the reflecting light from the substrate surface. The undercoating composition of the invention comprises (a) a melamine compound substituted by methylol groups and/or alkoxymethyl groups and (b) a polyhydroxy benzophenone compound, diphenyl sulfone compound or diphenyl sulfoxide compound, optionally, with admixture of (c) an alkali-insoluble resin of a (meth)acrylic acid ester.
摘要:
Disclosed is an improved, chemically-amplifying positive resist composition for radiations, especially UV rays, deep-UV rays, excimer laser beams, X-rays, electron beams. The composition comprises (A) a resin component whose solubility in an alkaline aqueous solution is increased by the action of acids, (B) a compound which generates an acid when exposed to radiations, and (A) a resin component, (B) an acid-generating agent and (C) an organic carboxylic acid compound, in which said resin component (A) is a mixture comprising (a) a polyhydroxystyrene where from 10 to 60 mol % of the hydroxyl groups have been substituted by residues of a general formula (I): ##STR1## wherein R.sup.1 represents a hydrogen atom or a methyl group, R.sup.2 represents a methyl group or an ethyl group, and R.sup.3 represents a lower alkyl group having 1 to 4 carbon atoms; and (b) a polyhydroxystyrene where from 10 to 60 mol % of the hydroxyl groups have been substituted by tert-butoxycarbonyloxy groups. The composition has a high sensitivity, a high resolution, high heat resistance, good width characteristic in focus depth and good post-exposure storage stability, has good storage stability as a resist solution, and gives resist patterns with good profiles, without depending on the substrate to which it is applied. The composition is useful for forming fine patterns in producing ultra-LSIs.
摘要:
Proposed is a novel undercoating composition to form an undercoating layer interposed between the surface of a substrate and a photoresist layer with an object to decrease the adverse influences by the reflection of light on the substrate surface in the pattern-wise exposure of the photoresist layer to ultraviolet light without the undesirable phenomena of intermixing between layers and notching along with a large selectivity ratio in the etching rates between the patterned resist layer and the undercoating layer in a dry-etching treatment. The undercoating composition comprises (A) an ultraviolet absorber which is a benzophenone compound or an aromatic azomethine compound each having at least one unsubstituted or alkyl-substituted amino group on the aryl groups and (B) a crosslinking agent which is preferably a melamine compound having at least two methylol groups or alkoxymethyl groups bonded to the nitrogen atoms in a molecule in a weight proportion (A):(B) in the range from 1:1 to 1:10.
摘要:
A proposal is made for the photolithographic formation of a patterned resist layer on a substrate without the troubles due to reflection of the exposure light on the substrate surface. Thus, patterning is conducted on a photoresist laminate comprising (a) a substrate; (b) a specific anti-reflection coating layer formed on one surface of the substrate; and (c) a photoresist layer formed on the anti-reflection coating layer from a specific negative-working chemical-sensitization photoresist composition comprising an oxime sulfonate acid generating agent. The patterning procedure comprises the steps of: (A) exposing, pattern-wise to actinic rays, the photoresist layer of the photoresist laminate; (B) subjecting the photoresist layer to a heat treatment; (C) subjecting the photoresist layer to a development treatment to dissolve away the photoresist layer in the areas unexposed to actinic rays in step (A) so as to expose bare the anti-reflection coating layer in the areas unexposed to the actinic rays leaving a patterned resist layer in the areas exposed to the actinic rays; and (D) removing the pattern-wise exposed anti-reflection coating layer by dry etching with the patterned photoresist layer as a mask.