Abstract:
An ElectroMagnetic-Mechanical Pulser can generate electron pulses at rates up to 50 GHz, energies up to 1 MeV, duty cycles up to 10%, and pulse widths between 100 fs and 10 ps. A modulating Transverse Deflecting Cavity (“TDC”) imposes a transverse modulation on a continuous electron beam, which is then chopped into pulses by an adjustable Chopping Collimating Aperture. Pulse dispersion due to the modulating TDC is minimized by a suppressing section comprising a plurality of additional TDC's and/or magnetic quadrupoles. In embodiments the suppression section includes a magnetic quadrupole and a TDC followed by four additional magnetic quadrupoles. The TDC's can be single-cell or triple-cell. A fundamental frequency of at least one TDC can be tuned by literally or virtually adjusting its volume. TDC's can be filled with vacuum, air, or a dielectric or ferroelectric material. Embodiments are easily switchable between passive, continuous mode and active pulsed mode.
Abstract:
A technique is presented to extract electromagnetic radiation from a dielectric loaded waveguide consisting of a layer or layers of dielectric material enclosed in a metallic conducting jacket. The electromagnetic radiation generated in the dielectric waveguide by a charged particle beam or otherwise generated as input to the waveguide. Dielectric loaded waveguides used for generation (or transport) of electromagnetic radiation at frequencies above 100 GHz have dimensions in the sub-mm range. Due to difficulty in the fabrication of a conventional broadband horn-like antenna to extract electromagnetic radiation from the structure because of the large impedance mismatch between the dielectric loaded waveguide and free space, the designing and fabricating aperture of antennas are formed as part of the dielectric waveguide and utilizes an angle cut or a set of apertures machined into the dielectric loaded waveguide to ensure broadband power extraction with minimal return loss and high directivity.
Abstract:
The present invention provides a technique for constructing compact, high gradient magnetic lenses for charged particle beam focusing. Methods for adjusting the focusing strength of the lenses are provided, based on thermal control, mechanical motion of the magnetic chips within the yoke. The present invention is a method for designing and fabricating permanent magnet focusing elements that are compact, simple to construct, and having a large, adjustable focusing strength. Applications include beamlines for THz radiation sources, free electron lasers, wakefield accelerators and any other charged particle devices that require a compact beamline.
Abstract:
The luminance of a transmission mode X-ray scintillator diamond plate is dominated by induced defect centers having an excited state lifetime less than 10 msec, and in embodiments less than 1 msec, 100 usec, 10 used, 1 used, 100 nsec, or even 50 nsec, thereby providing enhanced X-ray luminance response and an X-ray flux dynamic range that is linear with X-ray flux on a log-log scale over at least three orders of magnitude. The diamond plate can be a single crystal having a dislocation density of less than 104 per square centimeter, and having surfaces that are ion milled instead of mechanically polished. The defect centers can be SiV centers induced by silicon doping during CVD diamond formation, and/or NV0 centers formed by nitrogen doping followed by applying electron beam irradiation of the diamond plate and annealing.
Abstract:
An ElectroMagnetic-Mechanical Pulser can generate electron pulses at rates up to 50 GHz, energies up to 1 MeV, duty cycles up to 10%, and pulse widths between 100 fs and 10 ps. A modulating Transverse Deflecting Cavity (“TDC”) imposes a transverse modulation on a continuous electron beam, which is then chopped into pulses by an adjustable Chopping Collimating Aperture. Pulse dispersion due to the modulating TDC is minimized by a suppressing section comprising a plurality of additional TDC's and/or magnetic quadrupoles. In embodiments the suppression section includes a magnetic quadrupole and a TDC followed by four additional magnetic quadrupoles. The TDC's can be single-cell or triple-cell. A fundamental frequency of at least one TDC can be tuned by literally or virtually adjusting its volume. TDC's can be filled with vacuum, air, or a dielectric or ferroelectric material. Embodiments are easily switchable between passive, continuous mode and active pulsed mode.
Abstract:
A resonant apparatus such as a resonant waveguide module in an RF particle accelerator includes an unbrazed joint that provides a reliable vacuum seal and RF contact between resonators with precisely controlled internal geometry. The joint can be disassembled and reassembled without degradation. Hard, stainless steel end faces include knife edges pressed into a copper central component, such as a gasket. The knife edges extend the waveguide interiors without gaps or interruptions. The central component serves as a coupling iris or other functional component of the resonant apparatus, thereby allowing the central component to have substantial dimensions that inhibit mechanical distortions thereof. The waveguides and knife edges can be copper plated. Embodiments include embedded passages and/or recesses used for cooling, radiation shielding, magnetic focusing coils, and/or electron optics element formed by permanent magnets.
Abstract:
A dielectric loaded accelerator for accelerating charged particles, such as electrons, ions and/or protons, is described herein. The dielectric loaded accelerator accelerates charged particles along a longitudinal axis and towards an outlet of the accelerator. The dielectric loaded accelerator accelerates the charged particles using oscillating electromagnetic fields that propagate within the accelerator according to an electromagnetic mode. The dielectric loaded accelerator described herein includes an electromagnetic mode with a phase velocity that increases towards the outlet of the accelerator and matches a velocity of the charged particles being accelerated along the longitudinal axis of the accelerator. By matching the phase velocity of the oscillating electromagnetic fields to the velocity of the charged particles, the accelerator reduces phase slippage between the fields and the charged particles and, therefore, efficiently accelerates charged particle towards the outlet.