摘要:
A charged particle buncher includes a series of spaced apart electrodes arranged to generate a shaped electric field. The series includes a first electrode, a last electrode and one- or more intermediate electrodes. The charged particle buncher includes a waveform device attached to the electrodes and configured to apply a periodic potential waveform to each electrode independently in a manner so as to form a quasi-electrostatic time varying potential gradient between adjacent electrodes and to cause spatial distribution of charged particles that form a plurality of nodes and antinodes. The nodes have a charged particle density and the antinodes have substantially no charged particle density, and the nodes and the antinodes are formed from a charged particle beam configured to hit the target.
摘要:
An imaging system that selectively alternates between a first, non-destructive imaging mode and a second, destructive imaging mode to analyze a specimen so as to determine an atomic structure and composition of the specimen is provided. The field ionization mode can be used to acquire first images of ionized atoms of an imaging gas present in a chamber having the specimen disposed therein, and the field evaporation mode can be used to acquire second images of ionized specimen atoms evaporated from a surface of the specimen with the imaging gas remaining in the chamber. The first and second image data can be analyzed in real time, during the specimen analysis, and results can be used to dynamically adjust operating parameters of the imaging system.
摘要:
The invention relates to a collimator electrode stack (70), comprising: —at least three collimator electrodes (71-80) for collimating a charged particle beam along an optical axis (A), wherein each collimator electrode comprises an electrode body with an electrode aperture for allowing passage to the charged particle beam, wherein the electrode bodies are spaced along an axial direction (Z) which is substantially parallel with the optical axis, and wherein the electrode apertures are coaxially aligned along the optical axis; and —a plurality of spacing structures (89) provided between each pair of adjacent collimator electrodes and made of an electrically insulating material, for positioning the collimator electrodes at predetermined distances along the axial direction. Each of the collimator electrodes (71-80) is electrically connected to a separate voltage output (151-160).The invention further relates to a method of operating a charged particle beam generator.
摘要:
An imaging system that selectively alternates a first, non-destructive imaging mode and a second, destructive imaging mode to analyze a specimen so as to determine an atomic structure and composition of the specimen is provided. The field ionization mode can be used to acquire first images of ionized atoms of an imaging gas present in a chamber having the specimen disposed therein, and the field evaporation mode can be used to acquire second images of ionized specimen atoms evaporated from a surface of the specimen with the imaging gas remaining in the chamber. The first and second image data can be analyzed in real time, during the specimen analysis, and results can be used to dynamically adjust operating parameters of the imaging system.
摘要:
Embodiments of the invention relate to a mass resolving aperture that may be used in an ion implantation system that selectively exclude ion species based on charge to mass ratio (and/or mass to charge ratio) that are not desired for implantation, in an ion beam assembly. Embodiments of the invention relate to a mass resolving aperture that is segmented, adjustable, and/or presents a curved surface to the oncoming ion species that will strike the aperture. Embodiments of the invention also relate to the filtering of a flow of charged particles through a closed plasma channel (CPC) superconductor, or boson energy transmission system.
摘要:
A system for adaptive electron beam scanning may include an inspection sub-system configured to scan an electron beam across the surface of a sample. The inspection sub-system may include an electron beam source, a sample stage, a set of electron-optic elements, a detector assembly and a controller communicatively coupled to one or more portions of the inspection sub-system. The controller may assess one or more characteristics of one or more portions of an area of the sample for inspection and, responsive to the assessed one or more characteristics, adjust one or more scan parameters of the inspection sub-system.
摘要:
A particle beam detector is disclosed. The particle beam detector can include a particle beam receiving portion configured to convert particle beam energy to heat, and a plurality of temperature measuring devices disposed about the particle beam receiving portion. A location of a particle beam on the particle beam receiving portion can be determined by a temperature difference between at least two of the plurality of temperature measuring devices.
摘要:
A laser atom probe system and a method for analysing a specimen by laser atom probe tomography are disclosed. The system includes a specimen holder whereon a specimen to be analyzed may be mounted, the specimen having a tip shape. The system further includes a detector, an electrode arranged between the specimen holder and the detector, and a voltage source configured to apply a voltage difference between the specimen tip and the electrode. The system also includes at least one laser system configured to direct a laser beam laterally at the specimen tip and a tip shape monitoring means configured to detect and monitor the tip shape, and/or a means for altering and/or controlling one or more laser parameters of said laser beam(s) so as to maintain, restore or control said specimen tip shape.
摘要:
A scanning microscope is provided for producing a scan image at high spatial resolution and in a low acceleration voltage area. An acceleration tube is located in an electron beam path of an objective lens for applying a post-acceleration voltage of the primary electron beam. The application of an overlapping voltage onto a sample allows a retarding electric field against the primary electron beam to be formed between the acceleration tube and the sample. The secondary electrons generated from the sample and the secondary signals such as reflected electrons are extracted into the acceleration tube through the effect of an electric field (retarding electric field) immediately before the sample. The signals are detected by secondary signal detectors located upwardly than the acceleration tube.
摘要:
A method for imaging a surface of a substrate using a multi-beam imaging system includes: modifying an electron beam using a multipole-field device; generating beamlets from the electron beam using a beam-splitting device having multiple apertures; in response to projecting foci of the beamlets onto the surface, driving the beamlets using a deflector set to scan a region of the surface for receiving signals based on electrons scattered from the region; and determining an image of the region for inspection based on the signals. The multi-beam imaging system includes: an electron source; a first multipole-field device for beam shaping and beam aberration correction; a beam-splitting device; a projection lens set; a deflector set; an objective lens set; a detector array; a second multipole-field device; a processor; and a memory storing instructions to determine an image of the region for inspection based on the signals.