摘要:
Disclosed herein is a patterning mold to form a micropattern on a substrate or glass. The disclosed patterning mold includes a body having a patterning part formed at one end of the body. The patterning part may be configured to contact a surface of the substrate, to form a channel. In example embodiments, an ink supply passage communicating with the channel may be formed in the patterning mold, to supply an ink to the channel. In example embodiments, a fixing member is coupled to an exterior of the transfer body, to prevent or reduce deformation of the exterior of the transfer body.
摘要:
Disclosed herein is a patterning mold configured to form a micropattern on a substrate or glass. The disclosed patterning mold includes a transfer body with a patterning part formed at one end of the transfer body to transfer a nanoparticle material to one surface of the substrate. The patterning mold further includes a fixing member coupled to an exterior of the transfer body, to prevent or reduce deformation of the exterior of the transfer body.
摘要:
Disclosed herein is a patterning mold configured to form a micropattern on a substrate or glass. The disclosed patterning mold includes a transfer body with a patterning part formed at one end of the transfer body to transfer a nanoparticle material to one surface of the substrate. The patterning mold further includes a fixing member coupled to an exterior of the transfer body, to prevent or reduce deformation of the exterior of the transfer body.
摘要:
An ink composition for flexo printing contains a dye type colorant in order to precisely print. The ink composition for flexo printing includes about 1 to 40 wt. % of a colorant, about 5 to 40 wt. % of a binder, about 20 to 95 wt. % of a solvent and a remainder of an additive, wherein the wt. % of the colorant, the binder, the solvent and the additive is based on a total weight of the ink composition.
摘要:
According to example embodiments, a printing apparatus includes a wafer delivery unit configured to move and support a wafer, an optical microscope configured to inspect the wafer, a pattern transfer unit configured to display a position of a defect on the wafer detected using the optical microscope.
摘要:
Disclosed herein is a roll-to-roll patterning apparatus and a patterning system using the same. The patterning system may include a supply roll to supply a film member, a recovery roll to recover the film member, and a roll-to-roll patterning apparatus forming a coating on the film member. The roll-to-roll patterning apparatus may include a pattern roller, a plurality of press rollers, and an alignment roller. The pattern roller may include an outer peripheral surface with a first pattern. The plurality of press rollers may press a film member against the pattern roller to form a second pattern on the film member. The alignment roller may be spaced apart from the pattern roller and may be arranged at an upstream position in a movement direction of the film member. The alignment roller may align the film member entering a region between the pattern roller and the plurality of press rollers.
摘要:
Disclosed herein is a roll-to-roll patterning apparatus and a patterning system using the same. The patterning system may include a supply roll to supply a film member, a recovery roll to recover the film member, and a roll-to-roll patterning apparatus forming a coating on the film member. The roll-to-roll patterning apparatus may include a pattern roller, a plurality of press rollers, and an alignment roller. The pattern roller may include an outer peripheral surface with a first pattern. The plurality of press rollers may press a film member against the pattern roller to form a second pattern on the film member. The alignment roller may be spaced apart from the pattern roller and may be arranged at an upstream position in a movement direction of the film member. The alignment roller may align the film member entering a region between the pattern roller and the plurality of press rollers.
摘要:
A manufacturing process using a replica mold for nano imprinting having a grid type pattern by combining a nano imprint with a dry etching process is disclosed. In order to attain such a manufacturing process, a method of fabricating a mold for nano imprinting may include arranging a master mold having first patterns over a substrate having metal patterns so that both the first pattern and the metal pattern cross over each other, applying resin between the master mold and the substrate, applying an imprinting treatment of the substrate as well as the master mold, hardening the resin, and etching the hardened resin after the master mold is released, so as to form a replica mold for nano imprint. The nano imprinting process and the etching process may easily form a pattern in a more complicated structure, and therefore, may improve production yield and reduce processing time thereof.
摘要:
In forming a pattern on a substrate with reduced pattern error using a mold having an area smaller than an area of the substrate, a first resin pattern is formed on at least a first of a plurality of regions of an etching object layer by imprinting resin applied to the etching object layer using a first mold The etching object layer is then etched using the first resin pattern as an etching mask. A second resin pattern is formed on at least a second of the plurality of regions by imprinting resin applied to the etching object layer using a second mold. The etching object layer is again etched using the second resin pattern as an etching mask.
摘要:
Disclosed are a mask mold, a manufacturing method thereof, and a method for forming a large-sized micro pattern using the manufactured mask mold, in which the size of a nano-level micro pattern can be enlarged using a simple method with low cost and interference and stitching errors between cells forming a large area can be minimized. The method for manufacturing the mask mold includes the operations of coating resist on a mask or a plurality of small molds having an engraved micro pattern, pressing the small molds to imprint the micro pattern on the resist, curing the resist, and releasing the small molds from the resist.